Cho tan giác ABC có các góc đều nhìn AB=15, BC=14, AC=13.Tính số đo các góc của tam giác ABC
Bài 1:Cho tam giác ABC có AB=12,BC=15,AC=13.Tính số đo các góc và chu vi của tam giác ABC.
Cho tam giác ABC biết AB = 14, BC = 15, AC = 13. Tính các góc của tam giác ABC
cho tam giác ABC có AB = 12 cm ,AC = 13 cm , BC = 15 cm so sánh các góc của tam giác ABC
cho tam giác ABC có góc A bằng 50 độ góc B bằng 60 độ. Tính góc C và so sánh các cạnh của tam giác ABC
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
Cho tam giác ABC có \(AB = 12,AC = 15,BC = 20.\) Tính:
a) Số đo các góc A, B, C.
b) Diện tích tam giác ABC.
Ta có: \(a = BC = 20;\;b = AC = 15;\;c = AB = 12.\)
a) Áp dụng định lí cosin trong tam giác ABC, ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\;\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)
\( \Rightarrow \cos A = \frac{{{{15}^2} + {{12}^2} - {{20}^2}}}{{2.15.12}};\;\cos B = \frac{{{{20}^2} + {{12}^2} - {{15}^2}}}{{2.20.12}}\)
\( \Rightarrow \cos A = - \frac{{31}}{{360}};\;\cos B = \frac{{319}}{{480}}\)
\( \Rightarrow \widehat A = 94,{9^o};\;\widehat B = 48,{3^o}\)
\( \Rightarrow \widehat C = {180^o} - \left( {94,{9^o} + 48,{3^o}} \right) = 36,{8^o}\)
b)
Diện tích tam giác ABC là: \(S = \frac{1}{2}.bc.\sin A = \frac{1}{2}.15.12.\sin 94,{9^o} \approx 89,7.\)
cho tam giác ABC (AB<AC) có M là trung điểm của BC. Kẻ AH vuông góc với BC tại H biết góc BAH=góc HAM=góc MAC. tính số đo các góc của tam giác ABC
Cho tam giác ABC vuông tại A có đường cao AH,
AB = 15 cm và BH = 9 cm.
a/ Tính BC và AC.
b/ Tính góc HAC (số đo góc làm tròn đến phút).
c/ Tia phân giác của góc ABC cắt AH và AC tại F, E.
Chứng minh : BC = EC . tan(AFE)
a: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)
CH=16(cm)
BC=25(cm)
AC=20(cm)
Cho tam giác ABC có AB=AC=BC và góc A=gócB=góc C.Gọi M là trung điểm của cạnh BC. Tính số đo các góc của mỗi tam giác AMB,AMC.
Cho tam giác ABC có AB=AC tia phân giác của góc A cắt BC tại D.Chứng minh a:tam giác ADB=tam giác ADC. b: Kẻ DH vuông góc với AB (H€AB),DK vuông góc với AC (K€AC).Chứng minh AH=AK. c: Biết góc A = 3 góc C. Tính số đo các góc của tam giác ABC
Mình làm câu A thôi nha:
Xét tam giác ADB và tam giác ADC
Ta có:AB=AC (gt)
góc A1=A2 (gt)
AD là cạnh chung
=>tam giác ADB=tam giác ADC (cạnh-góc-cạnh)
Xét AHD và AKD lần lượt vuông tại H,K có:
AD: cạnh chung
HAD = KAD ( vì AD là tia phân giác góc A)
Suy ra AHD=AKD(ch-gn)
Do đó AH=AK ( 2 cạnh tương ứng)
bạn ơi vẽ hộ mình cái hình với gt/kl được ko bạn
cảm ơn bạn trước nha
cho tam giác ABC có số đo các góc A, B, C tỷ lệ với 3,2,1
a) Tính số đo các góc của tam giác ABC
b) vẽ tam giác ABC với số đo như trên. Lấy D là trung điểm của AC, kẻ DM vuông góc với Ac ( M\(\in\)BC). CMR tam giác ACM cân, tam giác ABM là tam giác đều
Tổng các góc trong tam giác là 180 độ
Gọi số đo các góc lần lượt là x,y,z
Ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)
=> x=90; y=60; z=30
Tam giác ABC vuông tại A
D trung điểm AC; DM vuông góc BC => M trung điểm BC
=> AM trung tuyến thuộc cạnh huyền
=> Góc ABM = góc BAM = 60 độ
=> Tam giác ABM đều