\(\sqrt{5}-\sqrt{4-4\sqrt{5}}\)
Rút gọn
Rút gọn : \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Cho \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B2 = \(4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}+4-\sqrt{10+2\sqrt{5}}\)
= \(8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
= \(8+2\sqrt{6-2\sqrt{5}}\)
= \(8+2\sqrt{5-2\sqrt{5}+1}\)
= \(8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
= \(8+2.\left(\sqrt{5}-1\right)\) (do \(\sqrt{5}>1\))
= \(6+2\sqrt{5}\)
= \(5+2\sqrt{5}+1\)
= \(\left(\sqrt{5}+1\right)^2\)
=> B = \(\sqrt{5}+1\)
Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}\right)^2+\left(\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2+2\sqrt{4+\sqrt{10+2\sqrt{5}}}\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.1+1^2}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(8+2\left|\sqrt{5}-1\right|=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.1+1^2\)
\(=\left(\sqrt{5}+1\right)^2\Rightarrow A=\sqrt{5}+1\left(A>0\right)\)
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\) rút gọn
Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\\ A^2=8+2\sqrt{16-10-2\sqrt{5}}=8+2\sqrt{6-2\sqrt{5}}\\ A^2=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\\ A=\sqrt{5}+1\)
Rút gọn biểu thức:
a) \(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}\)
b) \(\dfrac{\sqrt{21+8\sqrt{5}}}{4+\sqrt{5}}.\sqrt{9-4\sqrt{5}}\)
a)\(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}=\sqrt{\dfrac{1}{2}\left(16+8\sqrt{3}\right)}-\sqrt{\dfrac{1}{2}\left(16-8\sqrt{3}\right)}\)
\(=\sqrt{\dfrac{1}{2}\left(2+2\sqrt{3}\right)^2}-\sqrt{\dfrac{1}{2}\left(2-2\sqrt{3}\right)^2}\)\(=\sqrt{\dfrac{1}{2}}\left(2+2\sqrt{3}\right)-\sqrt{\dfrac{1}{2}}\left(2\sqrt{3}-2\right)=2\sqrt{2}\)
b)\(=\dfrac{\sqrt{16+2.4\sqrt{5}+5}}{4+\sqrt{5}}.\sqrt{\left(2-\sqrt{5}\right)^2}\)\(=\dfrac{\sqrt{\left(4+\sqrt{5}\right)^2}}{4+\sqrt{5}}\left|2-\sqrt{5}\right|=\sqrt{5}-2\)
a) Ta có: \(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}\)
\(=\sqrt{6}+\sqrt{2}-\sqrt{6}+\sqrt{2}\)
\(=2\sqrt{2}\)
b) Ta có: \(\dfrac{\sqrt{21+8\sqrt{5}}}{4+\sqrt{5}}\cdot\sqrt{9-4\sqrt{5}}\)
\(=\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)\)
=16-5=11
Rút gọn biểu thức : \(\sqrt{4+\sqrt{10+2\sqrt{5}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}}\)
Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Leftrightarrow A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(\Leftrightarrow A^2=8+2\sqrt{16-10-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\sqrt{6-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\left(\sqrt{5}-1\right)\\ \Leftrightarrow A^2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\\ \Leftrightarrow A=\sqrt{5}+1\)
Vậy \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=\sqrt{5}+1\)
Rút gọn căn thức: \(\sqrt{\sqrt{5}-\sqrt{5-\sqrt{21-4\sqrt{5}}}}\)
\(\sqrt{\sqrt{5}-\sqrt{5-\sqrt{21-4\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-\sqrt{\sqrt{20^2}-2.\sqrt{20}+1}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-\sqrt{\left(\sqrt{20}-1\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-\left|\sqrt{20}-1\right|}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-\sqrt{20}+1}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{5^2}-2\sqrt{5}+1}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\left|\sqrt{5}-1\right|}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=1\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
5.Rút gọn:
B= \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}\)
6.Rút gọn:
A= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
A = \(2.\sqrt{\dfrac{2\sqrt{5}+4}{2\sqrt{5}-4}}+5\sqrt{\dfrac{1}{5}}-\sqrt{45}\)
rút gọn A
\(A=2\cdot\sqrt{9+4\sqrt{5}}+\sqrt{5}-3\sqrt{5}\)
=2(căn 5+2)-2căn 5
=4
Rút gọn biểu thức
1)\(\sqrt{6+\sqrt{32}}\) - \(\sqrt{11-\sqrt{72}}\)
2) \(\sqrt{21-4\sqrt{5}}\) + \(\sqrt{21+4\sqrt{5}}\)
1) \(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{2^2+2\cdot2\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|2+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)
\(=2+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}-1\)
2) \(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}\)
\(=\sqrt{20-4\sqrt{5}+1}+\sqrt{20+4\sqrt{5}+1}\)
\(=\sqrt{\left(2\sqrt{5}\right)^2-2\sqrt{5}\cdot2\cdot1+1^2}+\sqrt{\left(2\sqrt{5}\right)^2+2\sqrt{5}\cdot2\cdot1-1^2}\)
\(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)
\(=\left|2\sqrt{5}-1\right|+\left|2\sqrt{5}+1\right|\)
\(=2\sqrt{5}-1+2\sqrt{5}+1\)
\(=4\sqrt{5}\)
rút gọn!!!
\(\sqrt{(1-\sqrt{5})^2} - \sqrt{16 - 4\sqrt{5}}\)
\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
rút gọn
Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)
=5