Cho 🔺ABC có vectơ MA + MB =O
Vectơ BC=2CN MN cắt AC tại K tính AK Trên AC
Cho tam giác ABC có M là trung điểm AB, N là điểm trên cạnh AC sao cho AN = 2 NC. Gọi K là trung điểm MN. Hãy phân tích vectơ AK theo vectơ AB và vectơ AC.
Cho 🔺ABC vuông tại A,có AB=AC. GỌI K là trung điểm của BC.
a. CM 🔺AKB=🔺ABC
b.Từ C kẻ đường vuông góc với BC,nó cắt A tại E. Cm AK vuông góc vs BC và EC//AK
c.CM CE = CB
Cho tam giác ABC có G là trọng tâm. Gọi M thuộc BC sao cho vectơ BM bằng 2 lần vectơ MC. Chứng minh rằng vectơ AB + 2 lần vectơ AC = 3 lần vectơ AM. Chứng minh rằng vectơ MA+ vectơ MB + vectơ MC = 3 lần vectơ MG
Cho hình bình hành ABCD, có M thuộc AB sao cho AB=3AM, N thuộc CD sao cho CD=2CN.
a) Phân tích vectơ AN theo hai vectơ AB và vectơ AC
b) G là trọng tâm tam giác MNB, phân tích vectơ AB và vectơ AC
c) I thuộc BC sao cho vectơ BI = k. vectơ BC Tính vectơ AI theo vectơ AB và vectơ AC và tìm ra k để A,I,G thẳng hàng
Bài 1
a) Cho 🔺ABC vuông tại A, biết AB=9cm; BC=15cm. Tính chu vi hình 🔺ABC.
b) Cho🔺ABC cân tại A biết góc C=50°.Tính số đo góc A và B
Bài 2
Cho 🔺ABC có AB=6 cm, AC=8cm, BC=10cm
a) CM: 🔺ABC vuông.
b) Kẻ AH vuông góc với BC. Biết AH = 4,8 cm. Tính độ dài đoạn BH, CH.
c) Lấy điểm I bất kì trên cạnh AH ( I không trùng với A và H). Cm: IC>IB.
Bài 3
Cho 🔺ABC vuông tại A, BD là phân giác của góc B. Vẽ Đi vuông góc với BC (I thuộc BC). Gọi K là giao điểm của hai đường thẳng Đi và AB. Cm rằng
a) 🔺ABC=🔺IBD
b) BD vuông góc với AI
c) DK=DC
d) Cho AM=6cm; AC=8cm.Hãy tính IC?
Bài 4
Cho 🔺ABC cân tại A. Tia phân giác của góc Bác cắt BC tại D
a) CM: 🔺ADB=🔺ADC
b) CM BD =DC; AD vuông góc với BC
c) Kể DK vuông góc với AB tại K, DE vuông góc với AC tại E. CM: 🔺DKE cân tại D.
CM: KE//BC
Bài 5
Cho 🔺 ABC vuông tại A, biết AB= 3cm,AC=4cm.Tia phân giác gốc B cắt cạnh AC tại F. Qua F kể đường thẳng vuông góc với cạnh BC tại K
Bài 6
Cho 🔺MNP cân tại M. Kẻ MI vuông góc với NP (I thuộc NP)
a) CM: IN=IP
b) Kẻ IH vuông góc với Mn (H thuộc MN) và IK vuông góc với MP( K thuộc MP). CM: 🔺IHK là🔺cân.
c) CM: HK//NP
Bài 7
Cho 🔺ABC có góc B<góc C
a) So sánh độ dài các cạnh AB và AC
b) Gọi M là Trung điểm của BC. Trên tia đối của tia Mà lấy điểm D sao cho MD=MA. CM: góc CDA< góc CAD
Giải hết đống này hộ mình nha. Mình mãi mình KTTT rồi. Thanks all ❤️❤️❤️
Cho tam giác ABC. Điểm M nằm trên cạnh BC sao cho MB = 2MC. Hãy phân tích vectơ A M → theo hai vectơ u → = A B → ; v → = A C →
Cho tam giác ABC. Điểm M nằm trên cạnh BC sao cho MB= 2MC. Hãy phân tích vectơ A M → theo hai vectơ u → = A B → , v → = A C → .
A.
B.
C.
D.
Cho tam giác ABC, N là trung điểm AC, điểm M nằm trên cạnh BC sao cho = 3 MB. Gọi I là trung điểm MN.
1. Chứng minh rằng
a, Với O là điểm bấy kỳ, véc tơ OA +véc tơ OB+2vectơOM=4OI
b,4 vectơ AM =3 vectơ AB+vectơ AC
2. Điểm E xác định bởi 4 vectơAE= 5 vectơAM. phân tích vectơ MN và vectơ BE theo hai vectơ AB, AC
3. Gọi K là giao điểm của BE và IC tính. tỉ số số KI/KC
MỌI NGƯỜI GIÚP EM VỚI
Đề thiếu ngay câu đầu nên ko thể giải được:
Sao cho \(?=3MB\)
a.
Câu a đề sai hoặc dữ kiện bạn ghi tiếp tục sai.
Gọi P là trung điểm AB thì \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IP}\) theo t/c trung tuyến
\(\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OM}=\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}+2\left(\overrightarrow{OI}+\overrightarrow{IM}\right)\)
\(=4\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IM}=4\overrightarrow{OI}+2\left(\overrightarrow{IP}+\overrightarrow{IM}\right)\)
Để tổng này bằng \(4\overrightarrow{OI}\) thì \(\overrightarrow{IP}+\overrightarrow{IM}=0\) đồng nghĩa I là trung điểm MP, đồng nghĩa P trùng N, hoàn toàn vô lý
b.
\(CM=3BM\Rightarrow4\overrightarrow{BM}=\overrightarrow{BC}\)
\(4\overrightarrow{AM}=4\overrightarrow{AB}+4\overrightarrow{BM}=4\overrightarrow{AB}+\overrightarrow{BC}=4\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}=3\overrightarrow{AB}+\overrightarrow{AC}\)
c.
Từ câu b \(\Rightarrow\overrightarrow{AM}=\frac{3}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}=-\frac{3}{4}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{AC}=-\frac{3}{4}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\)
\(\overrightarrow{AE}=\frac{5}{4}\overrightarrow{AM}\Rightarrow\overrightarrow{AM}+\overrightarrow{ME}=\frac{5}{4}\overrightarrow{AM}\Rightarrow\overrightarrow{ME}=\frac{1}{4}\overrightarrow{AM}\)
\(\overrightarrow{BE}=\overrightarrow{BM}+\overrightarrow{ME}=\frac{1}{4}\overrightarrow{BC}+\frac{1}{4}\overrightarrow{AM}=\frac{1}{4}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\frac{1}{4}\left(\frac{3}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)\)
\(\overrightarrow{BE}=-\frac{1}{16}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)
3.
\(\overrightarrow{CI}=\frac{1}{2}\overrightarrow{CM}+\frac{1}{2}\overrightarrow{CN}=\frac{1}{2}.\frac{3}{4}\overrightarrow{CB}+\frac{1}{2}.\frac{1}{2}\overrightarrow{CA}=\frac{3}{8}\left(\overrightarrow{CA}+\overrightarrow{AB}\right)+\frac{1}{4}\overrightarrow{CA}\)
\(=\frac{5}{8}\overrightarrow{CA}+\frac{3}{8}\overrightarrow{AB}=\frac{3}{8}\overrightarrow{AB}-\frac{5}{8}\overrightarrow{AC}\)
Đặt \(\overrightarrow{CK}=k.\overrightarrow{CI}=\frac{3k}{8}\overrightarrow{AB}-\frac{5k}{8}\overrightarrow{AC}\)
\(\overrightarrow{BK}=\overrightarrow{BC}+\overrightarrow{CK}=\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CK}=-\overrightarrow{AB}+\overrightarrow{AC}+\frac{3k}{8}\overrightarrow{AB}-\frac{5k}{8}\overrightarrow{AC}\)
\(=\frac{3k-8}{8}\overrightarrow{AB}-\frac{5k-8}{8}\overrightarrow{AC}=-2\left(3k-8\right)\left(-\frac{1}{16}\overrightarrow{AB}+\frac{5k-8}{16\left(3k-8\right)}\overrightarrow{AC}\right)\)
Do B;E;K thẳng hàng nên:
\(\frac{5k-8}{16\left(3k-8\right)}=\frac{1}{3}\Rightarrow k=\frac{104}{33}\)
\(\Rightarrow\frac{KI}{KC}=\frac{71}{104}\)
Cách tính toán là như vậy, còn quá trình tính toán đúng hay sai thì bạn tự tính lại
cho tg ABC vuông tại B có A= 30 độ, AB=a. gọi I là trung điểm của AC. Tính
a, Vectơ[ BA+BC]
b, vectơ[ AB+AC]