Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ánh Xuân Nguyễn Ngọc
Xem chi tiết
Đặng Thanh Trúc Loan
Xem chi tiết
linh nguyễn
Xem chi tiết
Võ Nguyễn Phương Thu
Xem chi tiết
Lê Văn Đạt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2018 lúc 14:28

Chọn B.

 

Ta có 

mà 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 1 2019 lúc 14:33

Trần Oanh
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 10 2020 lúc 21:53

Đề thiếu ngay câu đầu nên ko thể giải được:

Sao cho \(?=3MB\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
19 tháng 10 2020 lúc 22:52

a.

Câu a đề sai hoặc dữ kiện bạn ghi tiếp tục sai.

Gọi P là trung điểm AB thì \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IP}\) theo t/c trung tuyến

\(\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OM}=\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}+2\left(\overrightarrow{OI}+\overrightarrow{IM}\right)\)

\(=4\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IM}=4\overrightarrow{OI}+2\left(\overrightarrow{IP}+\overrightarrow{IM}\right)\)

Để tổng này bằng \(4\overrightarrow{OI}\) thì \(\overrightarrow{IP}+\overrightarrow{IM}=0\) đồng nghĩa I là trung điểm MP, đồng nghĩa P trùng N, hoàn toàn vô lý

b.

\(CM=3BM\Rightarrow4\overrightarrow{BM}=\overrightarrow{BC}\)

\(4\overrightarrow{AM}=4\overrightarrow{AB}+4\overrightarrow{BM}=4\overrightarrow{AB}+\overrightarrow{BC}=4\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}=3\overrightarrow{AB}+\overrightarrow{AC}\)

c.

Từ câu b \(\Rightarrow\overrightarrow{AM}=\frac{3}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}=-\frac{3}{4}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{AC}=-\frac{3}{4}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\)

\(\overrightarrow{AE}=\frac{5}{4}\overrightarrow{AM}\Rightarrow\overrightarrow{AM}+\overrightarrow{ME}=\frac{5}{4}\overrightarrow{AM}\Rightarrow\overrightarrow{ME}=\frac{1}{4}\overrightarrow{AM}\)

\(\overrightarrow{BE}=\overrightarrow{BM}+\overrightarrow{ME}=\frac{1}{4}\overrightarrow{BC}+\frac{1}{4}\overrightarrow{AM}=\frac{1}{4}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\frac{1}{4}\left(\frac{3}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)\)

\(\overrightarrow{BE}=-\frac{1}{16}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

Nguyễn Việt Lâm
19 tháng 10 2020 lúc 22:52

3.

\(\overrightarrow{CI}=\frac{1}{2}\overrightarrow{CM}+\frac{1}{2}\overrightarrow{CN}=\frac{1}{2}.\frac{3}{4}\overrightarrow{CB}+\frac{1}{2}.\frac{1}{2}\overrightarrow{CA}=\frac{3}{8}\left(\overrightarrow{CA}+\overrightarrow{AB}\right)+\frac{1}{4}\overrightarrow{CA}\)

\(=\frac{5}{8}\overrightarrow{CA}+\frac{3}{8}\overrightarrow{AB}=\frac{3}{8}\overrightarrow{AB}-\frac{5}{8}\overrightarrow{AC}\)

Đặt \(\overrightarrow{CK}=k.\overrightarrow{CI}=\frac{3k}{8}\overrightarrow{AB}-\frac{5k}{8}\overrightarrow{AC}\)

\(\overrightarrow{BK}=\overrightarrow{BC}+\overrightarrow{CK}=\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CK}=-\overrightarrow{AB}+\overrightarrow{AC}+\frac{3k}{8}\overrightarrow{AB}-\frac{5k}{8}\overrightarrow{AC}\)

\(=\frac{3k-8}{8}\overrightarrow{AB}-\frac{5k-8}{8}\overrightarrow{AC}=-2\left(3k-8\right)\left(-\frac{1}{16}\overrightarrow{AB}+\frac{5k-8}{16\left(3k-8\right)}\overrightarrow{AC}\right)\)

Do B;E;K thẳng hàng nên:

\(\frac{5k-8}{16\left(3k-8\right)}=\frac{1}{3}\Rightarrow k=\frac{104}{33}\)

\(\Rightarrow\frac{KI}{KC}=\frac{71}{104}\)

Cách tính toán là như vậy, còn quá trình tính toán đúng hay sai thì bạn tự tính lại

duong phan
Xem chi tiết
Mai Thị Khánh Chi
12 tháng 11 2023 lúc 19:28

Tui cũng dag tìm câu này nè