Cho tam giác ABC lấy các điểm M, N, P sao cho vectơ MB - 2 véctơ MC =vectơ NA + 2vectơ NC =vectơ PA +vectơ PB = vectơ O
a. Tính vecto PM, PN theo hai vectơ AB và AC
b. CMR: ba điểm M, N, P thẳg hàg
Cho tam giác ABC, M bất kỳ:
Thu gọn \(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{AC}\) còn 1 vectơ.
Cho tam giác ABC, M bất kỳ:
Thu gọn \(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{AC}\)còn 1 vectơ.
1.a) cho tg ABC có trọng tâm G , đg trung tuyến AM , CN. K là điểm đối xuengs của B qua G. C/m
Vectơ AB + vectơ AC = 3 vectơ KC.
b) D là điểm thuộc BC . BD = 3DC .C/m
Vecto AB + 3 vectơ AC = 4 vectơ AD.
GIÚP MK VS , MAI MK NỘP BÀI RỒI
Cho ∆ABC , trên cạnh BC lấy hai điểm I và J sao cho BI=IJ=JC. Biết góc A = 90° , BC = 6cm cho vectơ u = AB vectơ + AI vectơ + AJ vectơ + AC vectơ. Tính độ dài vectơ u
Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NA = 2NC. Gọi K là trung điểm của MN. Gọi D là trung điểm của BC. Hãy biểu diễn \(\overrightarrow{KD}\) theo các vectơ \(\overrightarrow{AB} \) và \(\overrightarrow{AC}\)
Cho tam giác ABC Gọi K là trung điểm của BC M thuộc AB sao cho MA=3MB, N thuộc AC sao cho \(\dfrac{NA}{NC}=\dfrac{4}{3}\) I là giao điểm của AK và MN. tính \(\dfrac{MI}{MN}=?\)
Tam giác ABC vuông tại A, AB = AC = 2. Độ dài vectơ \(\overrightarrow{\text{4}AB}-\overrightarrow{AC}\) bằng bao nhiêu?
cho tứ giác lồi ABCD . CM vecto AB+CD= vecto AD+BC
AB-CD=AC-BD
b) E,F,O lll trung điểm AB,CD,EF.CM vecto OA+OB+OC+OD=0
c) M bất kì cmr vecto MA+MB+MC+MD=4MO
d) giả sử 2 dg chéo AC,BD cắt nhau tại I cho vecto IA+IB+IC+ID=0.CM ABCD là hình bình hành