Bài 1: cho \(\Delta ABC\) vuông tại A , AC = 2AB = 2a. hãy dựng các vecto và tính độ dài của chúng:
1, \(\overrightarrow{c}\) = \(2\overrightarrow{AB}+3\overrightarrow{AC}\)
2, \(\overrightarrow{u}=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{4}{5}\overrightarrow{AC}\)
3, \(\overrightarrow{v}=\dfrac{7}{4}\overrightarrow{AB}-\dfrac{5}{2}\overrightarrow{AC}\)
Câu 1: Cho hình vuông ABCD có cạnh bằng 1. Gọi O là giao điểm 2 đường chéo AC, BD. Tìm khẳng định sai:
A. \(\overrightarrow{AB}.\overrightarrow{BC}=0\)
B.\(\overrightarrow{BC}.\overrightarrow{BD}=1\)
C.\(\overrightarrow{OD}.\overrightarrow{OB}=-\frac{1}{2}\)
D. \(\overrightarrow{AB}.\overrightarrow{AC}=\sqrt{2}\)
Câu 2: Cho tam giác ABC có M là trung điểm BC, N là trung điểm của BM. Đẳng thức nào sau đây đúng?
A. \(4\overrightarrow{AN}=3\overrightarrow{AB}+\overrightarrow{AC}
\)
B, \(2\overrightarrow{AN}=3\overrightarrow{AB}+\overrightarrow{AC}\)
C.\(4\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{3AC}\)
D.\(4\overrightarrow{AN}=3\overrightarrow{AB}+2\overrightarrow{AC}\)
cho tam giác ABC vuông cân tại A có AB = a.Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\)
Cho \(\Delta ABC\) điểm M thỏa mãn : \(\overrightarrow{MB}=-\overrightarrow{2MC}\)
a, G là trọng tâm tam giác ABC , H đối xứng với B qua G
CM: \(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
\(\overrightarrow{CH}=\frac{-1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
b. N là trung điểm của BC . CM \(\overrightarrow{NH}=\frac{1}{6}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)
cho tam giác ABC có trọng tâm G. Gội H là điểm đối xứng của B qua G
a, chứng minh \(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\) và \(\overrightarrow{CH}=-\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
b, gọi M là trung điểm của BC. CHứng minh \(\overrightarrow{MH}=\frac{1}{6}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)
Cho tam giác ABC, M bất kỳ:
Thu gọn \(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{AC}\) còn 1 vectơ.
Cho tam giác ABC, M bất kỳ:
Thu gọn \(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{AC}\)còn 1 vectơ.
Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NA = 2NC. Gọi K là trung điểm của MN. Gọi D là trung điểm của BC. Hãy biểu diễn \(\overrightarrow{KD}\) theo các vectơ \(\overrightarrow{AB} \) và \(\overrightarrow{AC}\)
Cho hình bình hành ABCD. Gọi M, N là các điểm thuộc AB, CD sao cho \(AM=\frac{1}{3}AB\), \(CN=\frac{1}{2}CD\). Gọi G là trọng tâm của tam giác BMN. Phân tích vectơ \(\overrightarrow{AG}\) theo \(\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AC}=\overrightarrow{b}\).