Cho tam giác ABC, M bất kỳ:
Thu gọn \(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{AC}\) còn 1 vectơ.
Cho tam giác ABC, tìm quỹ tích điểm M thỏa mãn:
a) \(\left|\overrightarrow{MA}+\overrightarrow{BC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
b) \(\left|\overrightarrow{2MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{4MB}-\overrightarrow{MC}\right|\)
c) \(\left|\overrightarrow{4MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{2MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
(Sử dụng kiển thức về tích của hai vecto)
Cho tam giác ABC. Xđinh M sao cho: \(\overrightarrow{MA}+3\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}\)
Khi đó CM: \(\overrightarrow{CM}=\dfrac{1}{6}\overrightarrow{OA}+\dfrac{1}{2}\overrightarrow{OB}+\dfrac{1}{3}\overrightarrow{OC}\)
Cho ΔABC. Tìm tập hợp điểm M thoả mãn
\(\left|\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho tam giác ABC với I, J lần lượt là trung điểm Của CB, CA đồng thời G là trọng tâm
a) Hãy biểu diễn \(\overrightarrow{IJ}\) theo \(\overrightarrow{BA}\)
b) CMR: với mọi điểm M bất kì ta luôn có \(\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}\)
c) CMR: với mọi điểm M bất kì ta luôn có \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)
Cho hình chữ nhật ABCD, \(AB=a;AC=2a\)
a, Tìm tập hợp điểm M sao cho \(|\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}|=|\overrightarrow{MD}|\)
b, Tìm vị trí điểm M để \(P=|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{2MC}|\) đạt GTNN
Cho tam giác ABC có G là trọng tâm, I là trug điểm AB, M thuộc cạnh AB sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=0\).
a, CMR; \(\overrightarrow{MC}+2\overrightarrow{MI}=3\overrightarrow{MG}\)
b, Giả sử điểm N t/m: \(\overrightarrow{AN}=x\overrightarrow{AC}\). Tìm x để M,N,G thẳng hàng
Cho \(\Delta ABC\) điểm M thỏa mãn : \(\overrightarrow{MB}=-\overrightarrow{2MC}\)
a, G là trọng tâm tam giác ABC , H đối xứng với B qua G
CM: \(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
\(\overrightarrow{CH}=\frac{-1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
b. N là trung điểm của BC . CM \(\overrightarrow{NH}=\frac{1}{6}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)
Gíup mìk với...mìk đag cần gấp vào sáng mai...help me
Cho tam giác ABC,gọi I,G lần lượt là trung điiểm của BC và trọng tâm tam giác ABC.Chứng minh rằng:
a) \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\)= 2\(\overrightarrow{MI}\)
b)\(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\)= 3\(\overrightarrow{MG}\)