cho tam giác ABC vuông tại C . Bt cosA=5/13. tính tanB
* Cho tam giác ABC vuông tại C. Biết cosA=\(\dfrac{5}{13}\). Tính tan B
\(\sin\widehat{A}=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
\(\cot\widehat{A}=\dfrac{5}{13}:\dfrac{12}{13}=\dfrac{5}{12}\)
\(\tan\widehat{B}=\dfrac{5}{12}\)
Cho tam giác ABC vuông tại C.biết cosA=5/13 và BC=10cm.Hãy tính độ dài các cạnh góc vuông
Lời giải:
Ta có:
$\frac{5}{13}=\cos A=\frac{AC}{AB}$
$\Rightarrow AB=\frac{13}{5}AC$
Áp dụng định lý Pitago:
$AC^2+BC^2=AB^2$
$\Leftrightarrow AC^2+10^2=(\frac{13}{5}AC)^2$
$\Leftrightarrow 100=\frac{144}{25}AC^2$
$\Leftrightarrow AC^2=\frac{625}{36}$
$\Rightarrow AC=\frac{25}{6}$ (cm)
Vậy......
Cho tam giác ABC vuông tại A
a) Biết cosC = 5/13. Tính sinC, cosB và tanC
b) Biết tanB = 1/5 . Tính E = sinB - 3cosB/2sinB + 3cosB
\(a,cosC=\dfrac{5}{13}\\ Ta,có:cos^2C+sin^2C=1\\ \Rightarrow sinC=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\\ cosB+sinC=1\\ \Leftrightarrow cosB+\dfrac{12}{13}=1\\ \Rightarrow cosB=\dfrac{1}{13}\\ tanC=\dfrac{sinC}{cosC}=\dfrac{\dfrac{12}{13}}{\dfrac{5}{13}}=\dfrac{12}{5}\)
\(b,tanB=\dfrac{1}{5}\Rightarrow\dfrac{sinB}{cosB}=\dfrac{1}{5}\Rightarrow cosB=5sinB\\ E=\dfrac{sinB-3cosB}{2sinB+3cosB}=\dfrac{sinB-3.5.sinB}{2sinB+3.5.sinB}=\dfrac{-14sinB}{17sinB}=-\dfrac{14}{17}\)
Cho tam giác ABC vuông tại C có sinA=3/5 .không tính số đo góc A.Hãy tính cosA,tanA,cotA
\(\sin^2\widehat{A}+\cos^2\widehat{A}=1\Leftrightarrow\cos^2\widehat{A}=1-\left(\dfrac{3}{5}\right)^2=1-\dfrac{9}{25}=\dfrac{16}{25}\\ \Leftrightarrow\cos\widehat{A}=\dfrac{4}{5}\\ \tan\widehat{A}=\dfrac{\sin\widehat{A}}{\cos\widehat{A}}=\dfrac{3}{4}\\ \Rightarrow\cot\widehat{A}=\dfrac{1}{\tan\widehat{A}}=\dfrac{4}{3}\)
Cho tam giác ABC vuông tại C có sinA=3/5 .không tính số đo góc A.Hãy tính cosA,tanA,cotA.
Cho tam giác ABC vuông tại C có sinA=3/5 .không tính số đo góc A.Hãy tính cosA,tanA,cotA.
Cho tam giác ABC vuông góc tại A, AB=5cm, tanB=5/12 hãy tính độ dài đường cao AH và trung tuyến BM của tam giác ABC
\(tanB=\dfrac{AC}{AB}=\dfrac{5}{12}\)
⇒ AC = \(\dfrac{5}{12}\) .AB
= \(\dfrac{5}{12}.5\)
\(=\dfrac{25}{12}\) (cm)
∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
\(=5^2+\left(\dfrac{25}{12}\right)^2\)
= \(\dfrac{4225}{144}\)
⇒ BC = \(\dfrac{65}{12}\) (cm)
AH.BC = AB.AC
⇒ AH = AB . AC : BC
= 5 . \(\dfrac{25}{12}:\dfrac{65}{12}\)
\(=\dfrac{25}{13}\left(cm\right)\)
M là trung điểm của AC
⇒ AM = AC : 2 = \(\dfrac{25}{12}:2\) \(=\dfrac{25}{24}\) (cm)
∆ABM vuông tại A
⇒ BM² = AB² + AM²
= \(5^2+\left(\dfrac{25}{24}\right)^2\)
= \(\dfrac{15025}{576}\)
⇒ BM = \(\dfrac{5\sqrt{601}}{24}\) (cm)
Cho tam giác ABC vuông tại A đường cao AH cho cos ABC=3/5 và BC=10
Tính M=2cosB -3sinB/1+tanB
Cho tam giác ABC cân tại A, tanB=√2 a)Tính tỉ số lượng giác góc C b)kẻ AH vuông góc với BC, AH=2√3. Tính các cạnh của tam giác ABC Giúp em với ạ!!!
\(\tan B=\sqrt{2}\Leftrightarrow\dfrac{\sin B}{\cos B}=\sqrt{2}\Leftrightarrow\sin B=\sqrt{2}\cos B\\ \sin^2B+\cos^2B=1\Leftrightarrow3\cos^2B=1\\ \Leftrightarrow\cos B=\sqrt{\dfrac{1}{3}}=\dfrac{\sqrt{3}}{3}\\ \Leftrightarrow\sin B=\dfrac{\sqrt{6}}{3}\\ \Leftrightarrow\left\{{}\begin{matrix}\sin C=\cos B=\dfrac{\sqrt{3}}{3}\\\cos C=\sin B=\dfrac{\sqrt{6}}{3}\end{matrix}\right.\\ \cot C=\tan B=\sqrt{3};\tan C=\dfrac{1}{\cot C}=\dfrac{\sqrt{3}}{3}\)