Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tấn Thịnh
Xem chi tiết
Nguyễn thành Đạt
25 tháng 7 2023 lúc 15:20

a) Điều kiện để phương trình có hai nghiệm trái dấu là :

\(\left\{{}\begin{matrix}m\ne0\\\Delta phẩy>0\\x_1.x_2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+4m+4-m^2+3m>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)

\(\Rightarrow0< m< 3\)

b) Để phương trình có 2 nghiệm phân biệt thì : \(\Delta\) phẩy  > 0

\(\Rightarrow m< 4\)

Ta có : \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=2\) 

\(\Leftrightarrow x_1^2+x_2^2=2x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=2x_1^2.x_2^2\)

Theo Vi-ét ta có : \(x_1+x_2=\dfrac{-2\left(m-2\right)}{m};x_1.x_2=\dfrac{m-3}{m}\)

\(\Rightarrow\dfrac{4\left(m-2\right)^2}{m^2}-2.\dfrac{m-3}{m}=2.\dfrac{\left(m-3\right)^2}{m^2}\)

\(\Leftrightarrow m=1\left(tm\right)\)

Vậy...........

 

 

 

Nguyễn Đức Trí
25 tháng 7 2023 lúc 15:25

a) \(mx^2+2\left(m-2\right)x+m-3=0\left(1\right)\)

Để \(\left(1\right)\) có hai nghiệm trái dấu \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-2\right)^2-m\left(m-3\right)>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+4-m^2-3m>0\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+4>0\\0< m< 3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{4}{7}\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow0< m< 3\)

b) \(\dfrac{1}{x^2_1}+\dfrac{1}{x^2_2}=2\Leftrightarrow\dfrac{x^2_1+x_2^2}{x^2_1.x^2_2}=2\) \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-4x_1.x_2}{x^2_1.x^2_2}=2\)

\(\Leftrightarrow\left(\dfrac{x_1+x_2}{x_1.x_2}\right)^2-\dfrac{4}{x_1.x_2}=2\)

\(\Leftrightarrow\left(\dfrac{\dfrac{2\left(2-m\right)}{m}}{\dfrac{m-3}{m}}\right)^2-\dfrac{4}{\dfrac{m-3}{m}}=2\)

\(\Leftrightarrow\left(\dfrac{2\left(2-m\right)}{m-3}\right)^2-\dfrac{4m}{m-3}=2\)

\(\Leftrightarrow4\left(2-m\right)^2-4m\left(m-3\right)=2.\left(m-3\right)^2\)

\(\Leftrightarrow4\left(4-4m+m^2\right)-4m^2+12=2.\left(m^2-6m+9\right)\)

\(\Leftrightarrow16-16m+4m^2-4m^2+12=2m^2-12m+18\)

\(\Leftrightarrow2m^2+4m-10=0\)

\(\Leftrightarrow m^2+2m-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt[]{6}\\m=-1-\sqrt[]{6}\end{matrix}\right.\) \(\Leftrightarrow m=-1+\sqrt[]{6}\left(\Delta>0\Rightarrow m>-\dfrac{4}{7}\right)\)

 

Trần Công Thanh Tài
Xem chi tiết

\(\text{Δ}=2^2-4\cdot1\cdot m=4-4m\)

Để phương trình có hai nghiệm thì Δ>=0

=>-4m+4>=0

=>-4m>=-4

=>m<=1(1)

Theo Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

\(\dfrac{x_1^2-3x_1+m}{x_2}+\dfrac{x_2^2-3x_2+m}{x_1}< =2\)

=>\(\dfrac{x_1^3+x_2^3-3\left(x_1^2+x_2^2\right)+m\left(x_1+x_2\right)}{x_1x_2}< =2\)

=>\(\dfrac{\left(x_1+x_2\right)^3-3x_1x_2-3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+m\left(x_1+x_2\right)}{x_1x_2}< =2\)

=>\(\dfrac{\left(-2\right)^3-3\cdot m-3\left[\left(-2\right)^2-2m\right]+m\cdot\left(-2\right)}{m}< =2\)

=>\(\dfrac{-8-3m-3\left(4-2m\right)-2m}{m}-2< =0\)

=>\(\dfrac{-5m-8-12+6m}{m}-2< =0\)

=>\(\dfrac{m-20-2m}{m}< =0\)

=>\(\dfrac{-m-20}{m}< =0\)

=>\(\dfrac{m+20}{m}>=0\)

=>\(\left[{}\begin{matrix}m>0\\m< =-20\end{matrix}\right.\)

Kết hợp (1), ta được: \(\left[{}\begin{matrix}0< m< =1\\m< =-20\end{matrix}\right.\)

DuaHaupro1
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2022 lúc 22:29

Ta có: \(-x^2+mx+4-m^2=0\)

\(\Leftrightarrow x^2-mx+m^2-4=0\)

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

Trúc Linh
Xem chi tiết
Phan uyển nhi
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 4 2021 lúc 20:02

\(\Delta'=m^2-\left(m+2\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)

\(x_1^3+x_2^3\le16\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\le16\)

\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)

\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)

\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)

\(\Leftrightarrow\left(m-2\right)\left[\left(2m+\dfrac{5}{4}\right)^2+\dfrac{39}{16}\right]\le0\)

\(\Leftrightarrow m\le2\) (2)

Kết hợp (1); (2) \(\Rightarrow\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)

Thương Thương
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 19:56

\(\Delta=\left(m-1\right)^2-4\left(m+3\right)=m^2-6m-11>0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+3\end{matrix}\right.\)

Ta có:

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m-1\right)^2-2\left(m+3\right)=m^2-4m-5\)

Biểu thức này ko tồn tại cả min lẫn max với điều kiện m từ (1)

Hoàng
Xem chi tiết
Trần Minh Hoàng
11 tháng 3 2021 lúc 17:24

Để pt có 2 nghiệm phân biệt thì \(\Delta'=m^2-\left(m+2\right)>0\Leftrightarrow\left(m+1\right)\left(m-2\right)>0\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -1\end{matrix}\right.\). (1)

Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\).

Ta có \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(2m\right)^3-3.2m.\left(m+2\right)=8m^3-6m^2-12m\).

Do đó \(8m^3-6m^2-12m\le16\Leftrightarrow\left(m-2\right)\left(8m^2+10m+8\right)\le0\Leftrightarrow m\le2\)

(do \(8m^2+10m+8=2\left(2m+\dfrac{5}{4}\right)^2+\dfrac{39}{8}>0\forall m\)).

Kết hợp vs (1) ta có m < -1.

Thanh Trúc
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 16:23

a. Bạn tự giải

b. Để pt có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)

c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)

 \(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)

\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)

\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

Nguyễn Tiến Đạt
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2021 lúc 11:45

\(\Delta=\left(m-1\right)^2-4\left(m+2\right)>0\)

\(\Leftrightarrow m^2-6m-7>0\Rightarrow\left[{}\begin{matrix}m>7\\m< -1\end{matrix}\right.\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+2\end{matrix}\right.\)

Để \(x_1< x_2< 1\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)>0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1>0\\\dfrac{m-1}{2}< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4>0\\m< 3\end{matrix}\right.\)

Kết hợp với (1) ta được: \(m< -1\)

Tuấn Nguyễn
Xem chi tiết