Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 21:05

a) Ta có:

\(\overrightarrow {DM}  = \overrightarrow {DA}  + \overrightarrow {AM}  =  - \overrightarrow {AD}  + \frac{1}{2}\overrightarrow {AB} \) (do M là trung điểm của AB)

\(\overrightarrow {AN}  = \overrightarrow {AB}  + \overrightarrow {BN}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \) (do N là trung điểm của BC)

b)

\(\begin{array}{l}\overrightarrow {DM} .\overrightarrow {AN}  = \left( { - \overrightarrow {AD}  + \frac{1}{2}\overrightarrow {AB} } \right).\left( {\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} } \right)\\ =  - \overrightarrow {AD} .\overrightarrow {AB}  - \frac{1}{2}{\overrightarrow {AD} ^2} + \frac{1}{2}{\overrightarrow {AB} ^2} + \frac{1}{4}\overrightarrow {AB} .\overrightarrow {AD} \end{array}\)

Mà \(\overrightarrow {AB} .\overrightarrow {AD}  = \overrightarrow {AD} .\overrightarrow {AB}  = 0\) (do \(AB \bot AD\)), \({\overrightarrow {AB} ^2} = A{B^2} = {a^2};{\overrightarrow {AD} ^2} = A{D^2} = {a^2}\)

\( \Rightarrow \overrightarrow {DM} .\overrightarrow {AN}  =  - 0 - \frac{1}{2}{a^2} + \frac{1}{2}{a^2} + \frac{1}{4}.0 = 0\)

Vậy \(DM \bot AN\) hay góc giữa hai đường thẳng DM và AN bằng \({90^ \circ }\).

Nguyễn Mina
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:26

a) \(\overrightarrow {AC}  + \overrightarrow {BD} = \overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {NC}  + \overrightarrow {BM}  + \overrightarrow {MN}  + \overrightarrow {ND}  \\=  \left( {\overrightarrow {AM}  + \overrightarrow {BM} } \right) + \left( {\overrightarrow {MN}  + \overrightarrow {MN} } \right) + \left( {\overrightarrow {NC}  + \overrightarrow {ND} } \right) \\=  \overrightarrow 0  + 2\overrightarrow {MN}  + \overrightarrow 0  = 2\overrightarrow {MN} \) (đpcm)                                                             

b) \(\overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {BC}  + \overrightarrow {AD} \)

\(\)\(\overrightarrow {BC}  + \overrightarrow {AD}  = \overrightarrow {BM}  + \overrightarrow {MN}  + \overrightarrow {NC}  + \overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {ND} \)

\(\left( {\overrightarrow {BM}  + \overrightarrow {AM} } \right) + \left( {\overrightarrow {MN}  + \overrightarrow {MN} } \right) + \left( {\overrightarrow {NC}  + \overrightarrow {ND} } \right) = 2\overrightarrow {MN} \)

Mặt khác ta có: \(\overrightarrow {AC}  + \overrightarrow {BD}  = 2\overrightarrow {MN} \)

Suy ra \(\overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {BC}  + \overrightarrow {AD} \)

Cách 2: 

\(\begin{array}{l}
\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {BC} + \overrightarrow {AD} \\
\Leftrightarrow \overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {BC} - \overrightarrow {BD} \\
\Leftrightarrow \overrightarrow {DC} = \overrightarrow {DC} (đpcm)
\end{array}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:58

a) Do ABCD cũng là một hình bình hành nên \(\overrightarrow {DA}  + \overrightarrow {DC}  = \overrightarrow {DB} \)

\( \Rightarrow \;|\overrightarrow {DA}  + \overrightarrow {DC} |\; = \;|\overrightarrow {DB} |\; = DB = a\sqrt 2 \)

b) Ta có: \(\overrightarrow {AD}  + \overrightarrow {DB}  = \overrightarrow {AB} \) \( \Rightarrow \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {DB} \)

\( \Rightarrow \left| {\overrightarrow {AB}  - \overrightarrow {AD} } \right| = \left| {\overrightarrow {DB} } \right| = DB = a\sqrt 2 \)

c) Ta có: \(\overrightarrow {DO}  = \overrightarrow {OB} \)

\( \Rightarrow \overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OA}  + \overrightarrow {DO}  = \overrightarrow {DO}  + \overrightarrow {OA}  = \overrightarrow {DA} \)

\( \Rightarrow \left| {\overrightarrow {OA}  + \overrightarrow {OB} } \right| = \left| {\overrightarrow {DA} } \right| = DA = a.\)

Min Suga
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 21:58

\(\overrightarrow{AM}-\overrightarrow{AN}=\overrightarrow{NM}\)

\(\overrightarrow{MN}-\overrightarrow{NC}=\overrightarrow{CM}\)

 

Ngọc Nhi
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 10 2020 lúc 17:23

Câu 1:

\(AC=\sqrt{AB^2+BC^2}=\sqrt{2}\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos45^0=1.\sqrt{2}.\frac{\sqrt{2}}{2}=1\)

Đáp án D sai

Câu 2:

\(BN=\frac{1}{2}BM=\frac{1}{4}BC\Rightarrow4\overrightarrow{BN}=\overrightarrow{BC}\)

Ta có:

\(4\overrightarrow{AN}=4\left(\overrightarrow{AB}+\overrightarrow{BN}\right)=4\overrightarrow{AB}+4\overrightarrow{BN}=4\overrightarrow{AB}+\overrightarrow{BC}\)

\(=4\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}=4\overrightarrow{AB}-\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AB}+\overrightarrow{AC}\)

Đáp án A đúng

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 16:01

Ta có:

\(\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AD}  + \overrightarrow {DN} \)

Mặt khác: \(\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BC}  + \overrightarrow {CN} \)

\(\begin{array}{l} \Rightarrow 2\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AD}  + \overrightarrow {DN}  + \overrightarrow {MB}  + \overrightarrow {BC}  + \overrightarrow {CN} \\ \Leftrightarrow 2\overrightarrow {MN}  = \left( {\overrightarrow {MA}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {DN}  + \overrightarrow {CN} } \right) + \overrightarrow {BC}  + \overrightarrow {AD} \\ \Leftrightarrow 2\overrightarrow {MN}  = \overrightarrow 0  + \overrightarrow 0  + \overrightarrow {BC}  + \overrightarrow {AD} \\ \Leftrightarrow 2\overrightarrow {MN}  = \overrightarrow {BC}  + \overrightarrow {AD} \end{array}\)

Lại có: 

\(\overrightarrow {BC}  + \overrightarrow {AD}  = \overrightarrow {BD}  + \overrightarrow {DC}  + \overrightarrow {AD}  = \overrightarrow {AD}  + \overrightarrow {DC} + \overrightarrow {BD}  = \overrightarrow {AC}  + \overrightarrow {BD} .\)

Vậy \(\overrightarrow {BC}  + \overrightarrow {AD}  = 2\overrightarrow {MN}  = \;\overrightarrow {AC}  + \overrightarrow {BD} .\)

Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 21:15

\(BM=2MA\Rightarrow\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}\)\(AN=3NC\Rightarrow\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\)

Do đó:

\(\overrightarrow{MN}.\overrightarrow{DN}=\left(\overrightarrow{MA}+\overrightarrow{AN}\right)\left(\overrightarrow{DA}+\overrightarrow{AN}\right)\)

\(=\left(-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\left(-\overrightarrow{AD}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\)

\(=\left(\dfrac{5}{12}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\left(\dfrac{3}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}\right)\)

\(=\dfrac{5}{16}AB^2-\dfrac{3}{16}AD^2=\dfrac{1}{8}AB^2=\dfrac{1}{8}\) (chú ý rằng \(\overrightarrow{AB}.\overrightarrow{AD}=0\) và \(AB=AD=1\))

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
19 tháng 5 2017 lúc 15:17

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng