Giải PT sau:
tan( 3x - \(\dfrac{\pi}{2}\) ) + cotx = 0
Mọi người giải giúp mình với!!!
Giúp mình giải nhanh các bài này nha mọi người.
Giải pt
1/sin^2x+cotx-3=0
Tan(2x+pi/10)-cot3x=0
Tìm max và min
Y=Sinx+sin(x-pi/3)
Y=Cos^2x+2cos2x
Cảm ơn !
Giải phương trình sau:
\(\tan\left(x+\dfrac{\pi}{3}\right)+\cot\left(\dfrac{\pi}{2}-3x\right)=0\)
Pt \(\Leftrightarrow\)\(tan\left(x+\dfrac{\pi}{3}\right)\)=\(-cot\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\)\(tan\left(x+\dfrac{\pi}{3}\right)\)=\(tan\left(\dfrac{\pi}{2}+\dfrac{\pi}{2}-3x\right)\)=\(tan\left(\pi-3x\right)\)
\(\Leftrightarrow\)\(x+\dfrac{\pi}{3}=\pi-3x+k\pi\)
\(\Leftrightarrow\)4\(x\)=\(\dfrac{4}{3}\pi+k\pi\)
\(\Leftrightarrow\) \(x=\) \(\dfrac{\pi}{3}+k\dfrac{\pi}{4}\)(\(k\in Z\))
\(pt\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=-cot\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=cot\left(-\dfrac{\pi}{2}+3x\right)\)
\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=tan\left(\dfrac{\pi}{2}+\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=tan\left(\pi-3x\right)\)
\(\Leftrightarrow x+\dfrac{\pi}{3}=\pi-3x+k\pi\)
\(\Leftrightarrow4x=\dfrac{2\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k\pi}{4}\)
Giải pt sau:
\(2\left(Tan^2x-Cot^2x\right)-5\left(Tanx+Cotx\right)+6=0\)
c1 có bao nhiêu giá trị nguyên của m để pt cos2x+sinx+m=0 có nghiệm \(x\in\left[-\dfrac{\pi}{6},\dfrac{\pi}{4}\right]\), câu này tui tìm được 2 giá trị mà đáp án lại là 3 nên mong lung ..
c2 tìm số nghiệm của pt \(\dfrac{tan^2x-tanx+cot^2x-cotx-2}{sin2x-1}=0\) thuộc khoảng ( pi, 3pi)
1.
\(\Leftrightarrow1-2sin^2x+sinx+m=0\)
\(\Leftrightarrow2sin^2x-sinx-1=m\)
Đặt \(sinx=t\Rightarrow t\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
Xét hàm \(f\left(t\right)=2t^2-t-1\) trên \(\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(f\left(-\dfrac{1}{2}\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\) ; \(f\left(\dfrac{\sqrt{2}}{2}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow-\dfrac{9}{8}\le f\left(t\right)\le0\Rightarrow-\dfrac{9}{8}\le m\le0\)
Có 2 giá trị nguyên của m (nếu đáp án là 3 thì đáp án sai)
2.
ĐKXĐ: \(sin2x\ne1\Rightarrow x\ne\dfrac{\pi}{4}\) (chỉ quan tâm trong khoảng xét)
Pt tương đương:
\(\left(tan^2x+cot^2x+2\right)-\left(tanx+cotx\right)-4=0\)
\(\Leftrightarrow\left(tanx+cotx\right)^2+\left(tanx+cotx\right)-4=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx+cotx=\dfrac{1+\sqrt{17}}{2}\\tanx+cotx=\dfrac{1-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)
Nghiệm xấu quá, kiểm tra lại đề chỗ \(-tanx+...-cotx\) có thể 1 trong 2 cái đằng trước phải là dấu "+"
Miền \(\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) là cung tròn CAB
Chiếu cung tròn lên trục cos (trục ngang) được đoạn màu đỏ, với O có hoành độ bằng 0, A có hoành độ bằng 1
Do đó miền giá trị của cos trên \(\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) là \(\left[0;1\right]\) hay đoạn OA
Giải các pt sau:
a) \(\sin\left(3x+60^o\right)=\dfrac{1}{2}\)
b) \(\cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{-\sqrt{2}}{2}\)
c) \(\tan\left(x+\dfrac{\pi}{6}\right)=\sqrt{3}\)
d) \(\cot\left(2x+\pi\right)=-1\)
a, Ta có : \(\sin\left(3x+60\right)=\dfrac{1}{2}\)
\(\Rightarrow3x+60=30+2k180\)
\(\Rightarrow3x=2k180-30\)
\(\Leftrightarrow x=120k-10\)
Vậy ...
b, Ta có : \(\cos\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow2x-\dfrac{\pi}{3}=\dfrac{3}{4}\pi+k2\pi\)
\(\Leftrightarrow x=\dfrac{13}{24}\pi+k\pi\)
Vậy ...
c, Ta có : \(tan\left(x+\dfrac{\pi}{6}\right)=\sqrt{3}\)
\(\Rightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)
Vậy ...
d, Ta có : \(\cot\left(2x+\pi\right)=-1\)
\(\Rightarrow2x+\pi=\dfrac{3}{4}\pi+k\pi\)
\(\Leftrightarrow x=-\dfrac{1}{8}\pi+\dfrac{k}{2}\pi\)
Vậy ...
a) \(sin\left(3x+60^0\right)=\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(3x+\dfrac{\pi}{3}\right)=sin\dfrac{\pi}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\3x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(\(k\in Z\))
Vậy...
b) Pt\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\dfrac{3\pi}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13\pi}{24}+k\pi\\x=-\dfrac{5\pi}{24}+k\pi\end{matrix}\right.\)(\(k\in Z\))
Vậy...
c) Pt \(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=tan\dfrac{\pi}{3}\)
\(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi,k\in Z\)\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi,k\in Z\)
Vậy...
d) Pt \(\Leftrightarrow tan\left(2x+\pi\right)=-1\)
\(\Leftrightarrow2x+\pi=-\dfrac{\pi}{4}+k\pi,k\in Z\)
\(\Leftrightarrow x=-\dfrac{5\pi}{8}+\dfrac{k\pi}{2},k\in Z\)
Vậy...
Giải các phương trình sau:
\(a,cos3x=-cos\left(x+\dfrac{\pi}{3}\right)\)
\(b,tanx+cotx=0\)
a) cos3x = \(cos\left(\pi-x-\dfrac{\pi}{3}\right)\)
<=> cos3x = \(cos\left(\dfrac{2\pi}{3}-x\right)\)
<=> 3x = \(\dfrac{2\pi}{3}-x\) hoặc 3x = \(\dfrac{-2\pi}{3}+x\)
<=> 4x = \(\dfrac{2\pi}{3}+k2\pi\) hoặc 2x = \(\dfrac{-2\pi}{3}+k2\pi\)
<=> x = \(\dfrac{\pi}{6}+\dfrac{k\pi}{2}\) hoặc x = \(\dfrac{-\pi}{3}+k\pi\)
<=> x = \(\left\{\dfrac{\pi}{6}+\dfrac{k\pi}{2};\dfrac{-\pi}{3}+k\pi;k\in Z\right\}\)
b ) Điều kiện sinx\(\ne0;cosx\ne0\)
<=> sin2x\(\ne0\) <=> x \(\ne\dfrac{k\pi}{2}\);k\(\in Z\)
tanx + cotx =0
<=> tan2x + tanx =0
<=> tanx(tanx+1)=0
<=> tanx=0 hoặc tanx = -1
<=> x=\(k\pi\) (loại) hoặc x = \(\dfrac{-\pi}{4}+k\pi\)
Vậy x = \(\dfrac{-\pi}{4}+k\pi;k\in Z\)
Mọi người giải nhanh bài này giúp mình với, mình sắp phải nộp bài rồi😓
Thực hiện phép tính sau:
1. \(\dfrac{2x+6}{3x^2-x}:\dfrac{x^2+3x}{1-3x}\)
2. \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)
3. \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{4-9x^2}\)
4.\(\dfrac{x+3}{x+1}+\dfrac{2x-1}{x-1}+\dfrac{x+5}{x^2-1}\)
giải pt lượng giác sau:
\(\frac{4cosx.cos^2\left(x+\frac{\pi}{2}\right)-sin\left(x+\frac{\pi}{6}\right)}{cos^2x-3sin^2x}=0\)
Mọi người giúp đỡ nhé :3
giải các pt sau:
a, cot(x-\(\dfrac{\pi}{3}\))=1
b, tan(x+\(48^o\))=tan\(25^o\)
c, tan(x+\(\dfrac{3\pi}{4}\))=tan\(\dfrac{\pi}{7}\)
a: =>x-pi/3=pi/4+kpi
=>x=7/12pi+kpi
b: =>x+48 độ=25 độ+k*180
=>x=-23 độ+k*180 độ
c: =>x+3/4pi=pi/7+kpi
=>x=-17/28pi+kpi