Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tung Hoang
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2022 lúc 22:27

a: \(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{48}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{48}\right)⋮3\)

b: \(2^0+2^1+2^2+...+2^{101}\)

\(=\left(1+2+2^2\right)+...+2^{99}\left(1+2+2^2\right)\)

\(=7\left(1+...+2^{99}\right)⋮7\)

c: 2A=2+2^2+...+2^101

=>A=2^101-1

Phan Lâm Thanh Trúc
Xem chi tiết
Kiều Vũ Linh
23 tháng 12 2023 lúc 12:07

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

Sajika
Xem chi tiết
Linh:3 Nguyễn (Lucy:3)
25 tháng 8 lúc 16:45

Bây giờ cậu cần không thế;D

 

Sajika
13 tháng 11 lúc 18:29

h mik ko gấp nữa, nhưng nếu cậu biết cách giải thì chỉ mik nha ạ, làm tư liệu sau này mik học ý ạ :>

Pham Ngoc Diep
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 10 2021 lúc 22:49

\(M=2+2^2+...+2^{60}\)

\(=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\cdot\left(2+...+2^{59}\right)⋮3\)

\(M=2+2^2+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

 

 

laaam2k12+1
13 tháng 10 lúc 10:27

ê

laaam2k12+1
13 tháng 10 lúc 10:27

giúp tui làm bài này cái

 

Trúc Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2022 lúc 22:47

a: \(2A=2^2+2^3+...+2^{61}\)

=>A=2^61-2

b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{55}+2^{58}\right)\) chia hết cho 7(1)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=3\left(2+2^3+...+2^{59}\right)⋮3\left(2\right)\)

Từ (1), (2) suy ra A chia hết cho 21

Rosie
Xem chi tiết
Hà Vy
5 tháng 10 2021 lúc 18:28

A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3
=>A  chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

CHIA HẾT CHO 3 :

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3

=>A chia hết cho 3


 

Khách vãng lai đã xóa
Yen Nhi Nguyen Hai
4 tháng 11 2021 lúc 18:41

dcv

Trần Mi Anh
Xem chi tiết
ghost river
10 tháng 10 2017 lúc 20:10

Sửa đề : 2 + 2+ 23 + ... + 260
2 + 2+ 23 + ... + 260 = ( 2 + 22 + 23 + 24 ) + ( 2+ 26 + 27 + 28 ) + .... + ( 257 + 258 + 259 + 260 )
                                 =20. 30 + 24 . 30 + ... + 256 . 30
                                 = ( 20 + 24 + ... + 256) . 2 . 15 \(⋮\)15
 

Nguyễn Mai Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2023 lúc 21:50

a: \(G=8^8+2^{20}\)

\(=2^{24}+2^{20}\)

\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)

b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)⋮15\)

c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)

\(E=1+3+3^2+3^3+...+3^{1991}\)

\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)

\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)

Khánh Linh
Xem chi tiết
Khánh Linh
10 tháng 10 2021 lúc 19:15

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

Nguyễn Lê Phước Thịnh
10 tháng 10 2021 lúc 23:04

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

Lê Thị Vân
Xem chi tiết
Akai Haruma
29 tháng 10 2023 lúc 15:45

Lời giải:

$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$

$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$

$=(1+2+2^2)(2+2^4+....+2^{58})$

$=7(2+2^4+....+2^{58})\vdots 7$.

Lê Thanh Ngọc
29 tháng 10 2023 lúc 15:49

A = 2+22+23+...+260

A = 2.(1+2+22) + 24.(1+2+22) + ... + 258.(1+2+22)

A = 2.7+24.7+...+258.7

A= 7. (2+24+...+258) chia hết cho 7

--> A chia hết cho 7 (ĐPCM)