Cho các điểm: \(A\left(m;3\right);B\left(1;m\right)\) nằm trên đường thẳng có hệ số góc \(m>0\).
Tính m
Vẽ một hệ trục tọa độ \(Oxy\) và đánh dấu các điểm \(M\left( {0;2} \right);N\left( {0;1} \right);P\left( {0;4} \right)\).
a) Em có nhận xét gì về các điểm \(M;N;P\)?
b) Em hãy cho biết một điểm bất kì trên trục tung có hoành độ bằng bao nhiêu.
a: M,N,P đều nằm trên trục tung
b; Hoành độ bằng 0
Trên tia \(Ox\), xác định các điểm \(A\) và \(B\) sao cho \(OA=a\left(cm\right)\), \(OB=b\left(cm\right)\)
a) Tính độ dài đoạn thẳng \(AB\), biết \(b< a\)
b) Xác định điểm \(M\) trên tia \(Ox\) sao cho \(OM=\dfrac{1}{2}\left(a+b\right)\)
a, Ta có : \(AB=OA-OB=a-b\left(cm\right)\)
b, Có lẽ là M trên tia Ox .
Ta có : \(OM=\dfrac{1}{2}\left(a+b\right)\)
=> M là trung điểm của AB .
Mình làm rõ ý B hơn để bạn dễ hiểu nha
Thấy : \(OM=\dfrac{1}{2}\left(a+b\right)< \dfrac{1}{2}\left(a+a\right)\)
\(\Rightarrow OM< OA\)
\(\Rightarrow OM=OA-AM\)
\(\Rightarrow\dfrac{1}{2}\left(a+b\right)=a-AM\)
\(\Leftrightarrow AM=a-\dfrac{1}{2}\left(a+b\right)=a-\dfrac{1}{2}a-\dfrac{1}{2}b=\dfrac{1}{2}\left(a-b\right)\)
=> Khoảng cách từ M đến A bằng nửa khoảng cách từ B đến A .
=> M là trung điểm của AB .
Vậy ...
Trong mặt phẳng tọa độ Oxy cho \(\overrightarrow{v}=\left(2;-1\right)\), điểm \(M\left(3;2\right)\). Tìm tọa độ của các điểm A sao cho :
a) \(A=T_{\overrightarrow{v}}\left(M\right)\)
b) \(M=T_{\overrightarrow{v}}\left(A\right)\)
Cho đường tròn \(\left(O\right)\) và điểm \(M\) nằm ngoài đường tròn. Từ \(M\), vẽ các tiếp tuyến \(MA,MB\) (\(A,B\) là các tiếp điểm). Lấy \(I\) nằm trong cung nhỏ \(AB\) (\(I\) khác \(A,B\)). Từ \(I\), vẽ tiếp tuyến thứ ba của đường tròn \(\left(O\right)\), tiếp tuyến đó cắt \(MA,MB\) tại \(E,F\). Cho \(\hat{AOB}=120^o\), tìm giá trị nhỏ nhất của \(S_{OEF}\).
Cho hàm số \(y=\left(m-1\right)x^2\) \(\left(m\ne1\right)\) có đồ thị là parabol (P)
a, Xác định m để (P) đi qua điểm \(A\left(-\sqrt{3};1\right)\)
b, Với giá tị m vừa tìm được ở trên, hãy;
i, Vẽ (P) trên mặt phẳng tọa độ
ii, Trong các điểm A(1;1), B\(\left(-1;\dfrac{1}{3}\right)\) và C(15;-75), điểm nào thuộc (P), điểm nào không thuộc (P) ?
iii, Tìm các điểm trên (P) có hoành độ bằng 1
iv, Tìm các điểm trên (P) có tung độ gấp đôi hoành độ
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A\left(0;2\right);B\left(-2;2\right);C\left(4;-2\right)\). Gọi H là chân đường cao kẻ từ B, M và N lần lượt là trung điểm của các cạnh AB và BC. Viết phương trình đường tròn đi qua các điểm H, M, N
Cho tứ diện \(ABCD\) và điểm \(M\) thuộc cạnh \(AB\). Gọi \(\left( \alpha \right)\) là mặt phẳng qua \(M\), song song với hai đường thẳng \(BC\) và \(AD\). Gọi \(N,P,Q\) lần lượt là giao điểm của mặt phẳng \(\left( \alpha \right)\) với các cạnh \(AC,CD\) và \(DB\).
a) Chứng minh \(MNPQ\) là hình bình hành.
b) Trong trường hợp nào thì \(MNPQ\) là hình thoi?
a) Ta có:
\(\begin{array}{l}MN = \left( \alpha \right) \cap \left( {ABC} \right)\\PQ = \left( \alpha \right) \cap \left( {BC{\rm{D}}} \right)\\BC = \left( {ABC} \right) \cap \left( {BC{\rm{D}}} \right)\\MN\parallel BC\end{array}\)
Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MN\parallel PQ\parallel BC\) (1).
\(\begin{array}{l}MQ = \left( \alpha \right) \cap \left( {ABD} \right)\\NP = \left( \alpha \right) \cap \left( {AC{\rm{D}}} \right)\\A{\rm{D}} = \left( {ABD} \right) \cap \left( {AC{\rm{D}}} \right)\\MQ\parallel A{\rm{D}}\end{array}\)
Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MQ\parallel NP\parallel A{\rm{D}}\) (2).
Từ (1) và (2) suy ra \(MNPQ\) là hình bình hành.
b) Để \(MNPQ\) là hình thoi thì \(MN = NP\).
Ta có:
\(\begin{array}{l}MN\parallel BC \Rightarrow \frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\\NP\parallel A{\rm{D}} \Rightarrow \frac{{NP}}{{A{\rm{D}}}} = \frac{{CN}}{{AC}} \Rightarrow \frac{{MN}}{{A{\rm{D}}}} = \frac{{CN}}{{AC}}\end{array}\)
Ta có:
\(\begin{array}{l}\frac{{AN}}{{AC}} + \frac{{CN}}{{AC}} = 1 \Leftrightarrow \frac{{MN}}{{BC}} + \frac{{MN}}{{A{\rm{D}}}} = 1 \Leftrightarrow MN.\left( {\frac{1}{{BC}} + \frac{1}{{A{\rm{D}}}}} \right) = 1\\ \Leftrightarrow MN.\frac{{BC + A{\rm{D}}}}{{BC.A{\rm{D}}}} = 1 \Leftrightarrow MN = \frac{{BC.A{\rm{D}}}}{{BC + A{\rm{D}}}}\end{array}\)
Vậy nếu \(MN = \frac{{BC.A{\rm{D}}}}{{BC + A{\rm{D}}}}\) thì \(MNPQ\) là hình thoi.
cho parabol (P): \(y=\dfrac{1}{2}x^2\) và đường thẳng d:\(y=\left(m+1\right)x-m^2-\dfrac{1}{2}\) (m là tham số)
tìm các giá trị của m thì đường thẳng d cắt parabol (P) tại 2 điểm \(A\left(x_1;y_1\right)\), \(B\left(x_2;y_2\right)\) sao cho biểu thức \(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\) đạt GTNN
Sửa đề: Sao cho biểu thức T đạt GTLN
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=\left(m+1\right)x-m^2-\dfrac{1}{2}\)
=>\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)
=>\(x^2-\left(2m+2\right)x+2m^2+1=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(2m^2+1\right)\)
\(=4m^2+8m+4-8m^2-4=-4m^2+8m\)
Để phương trình có hai nghiệm thì Δ>=0
=>\(-4m^2+8m>=0\)
=>\(-4\left(m^2-2m\right)>=0\)
=>\(m^2-2m< =0\)
=>\(m\left(m-2\right)< =0\)
TH1: \(\left\{{}\begin{matrix}m>=0\\m-2< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=0\\m< =2\end{matrix}\right.\)
=>0<=m<=2
TH2: \(\left\{{}\begin{matrix}m< =0\\m-2>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< =0\\m>=2\end{matrix}\right.\)
=>Loại
\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)
\(a=\dfrac{1}{2};b=-\left(m+1\right);c=m^2+\dfrac{1}{2}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{m+1}{\dfrac{1}{2}}=2\left(m+1\right)\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+\dfrac{1}{2}}{\dfrac{1}{2}}=2\left(m^2+\dfrac{1}{2}\right)=2m^2+1\end{matrix}\right.\)
\(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\)
\(=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2-2m^2-1-2m-2\)
\(=\dfrac{1}{2}\left(x_1^2+x_2^2\right)-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[\left(2m+2\right)^2-2\left(2m^2+1\right)\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[4m^2+8m+4-4m^2-2\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left(8m+2\right)-2m^2-2m-3\)
\(=4m+1-2m^2-2m-3=-2m^2+2m-2\)
\(=-2\left(m^2-m+1\right)\)
\(=-2\left(m^2-m+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-2\left[\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
\(=-2\left(m-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}\)
Dấu '=' xảy ra khi m=1/2
Lời giải:
PT hoành độ giao điểm:
$\frac{1}{2}x^2-(m+1)x+m^2+\frac{1}{2}=0$
$\Leftrightarrow x^2-2(m+1)x+2m^2+1=0(*)$
Để 2 đths cắt nhau tại 2 điểm pb thì pt $(*)$ phải có 2 nghiệm pb
$\Leftrightarrow \Delta'=(m+1)^2-(2m^2+1)>0$
$\Leftrightarrow m(2-m)>0$
$\Leftrightarrow 0< m< 2$
Áp dụng định lý Viet:
$x_1+x_2=2m+2$
$x_1x_2=2m^2+1$
Khi đó:
$T=y_1+y_2-x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(x_1^2+x_2^2)-x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(x_1+x_2)^2-2x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(2m+2)^2-2(2m^2+1)-(2m+2)$
$=-2m^2+2m-2$
Với điều kiện $0< m< 2$ thì biểu thức này không có min nhé. Bạn xem lại.
Cho \(A\left(1;2\right);B\left(-3;1\right);C\left(4;-2\right)\). Tìm tập hợp các điểm M sao cho \(MA^2+MB^2=MC^2\) ?
Giả sử M có tọa độ (x;y), ta có:
MA2= (x - 1)2 + (y + 2)2 ;
MA2= (x + 3)2 + (y - 1)2
MC2= (x - 4)2 + (y + 2)2
Vì MA2 + MB2 = MC2 nên x2 + y2 + 12x - 10y - 5 = 0.
Vậy { M } là đường tròn tâm I (-6;5), bán kính R = \(\sqrt{66}\)
Cho hàm số y = -2x
a) Vẽ đồ thị của hàm số
b) Trong các điểm \(M\left(3;6\right),N\left(-2;4\right),P\left(\frac{1}{2};-2\right)\), điểm nào thuộc đồ thị hàm số