Đường thẳng đi qua A;B có dạng \(y=mx+n\)
Do \(A\left(m;3\right);B\left(1;m\right)\)
\(\Rightarrow\left\{{}\begin{matrix}m^2+n=3\\m+n=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m^2=3\\n=0\end{matrix}\right.\Rightarrow m=\sqrt{3}\)
Đường thẳng đi qua A;B có dạng \(y=mx+n\)
Do \(A\left(m;3\right);B\left(1;m\right)\)
\(\Rightarrow\left\{{}\begin{matrix}m^2+n=3\\m+n=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m^2=3\\n=0\end{matrix}\right.\Rightarrow m=\sqrt{3}\)
Bài 1: Cho 3 đường thẳng: \(\left(d_1\right)y=2x-1\); \(\left(d_2\right)y=3x-2\); \(\left(d_3\right)y=x+1\). Tìm m để 2 đường thẳng \(\left(d_1\right)\) và \(\left(d_2\right)\) cắt nhau tại một điểm nằm trên đường thẳng \(\left(d_3\right)\)
Cho hai đường thẳng \(y=-4x+m-1\left(d_1\right)\) và \(y=\dfrac{4}{3}x+15-3x\left(d_2\right)\)
a, Tìm m để đường thẳng \(\left(d_1\right)\) và (\(\left(d_2\right)\) cắt nhau tại một điểm C trên trục tung.
b, Với m ở trên hãy tìm tọa độ giao điểm A,B của 2 đường thẳng \(\left(d_1\right),\left(d_2\right)\) với trục hoành.
Cho hàm số bậc nhất: \(y=\left(m-3\right)x+3m-1\left(m\ne3\right)\) có đồ thị (d)
5) Tìm m để (d) cắt đường thẳng \(y=2x+10\) tại điểm có hoành độ bằng 12
cho hàm số y = 3x + 2 có đồ thị là đường thẳng (d1)
a, điểm A \(\left(\dfrac{1}{3};3\right)\) có thuộc đường thẳng (d1) hay không ? tại sao ?
b, tìm giá trị của m để đường thẳng (d1) và đường thẳng (d2) có phương trình là y = -2x - m cắt nhau tại điểm có hoành độ bằng 1
Cho 3 đường thẳng \(\left(d_1\right):y=\left(m^2-1\right)x-m^2+3\)
\(\left(d_2\right):y=x+5\)
\(\left(d_3\right):y=-x+1\)
a,Chứng minh rằng với mọi giá trị của m thì đường thẳng \(\left(d\right)\) luôn đi qua 1 điểm cố định
b, tìm m biết \(\left(d_1\right)\) song song với \(\left(d_2\right)\)
c, chứng minh nếu \(\left(d_1\right)\) song song với \(\left(d_2\right)\) thì \(\left(d_1\right)\perp\left(d_2\right)\)
d,tìm m để 3 đường thẳng đồng quy
HELP ME THỨ 3 PẢI NỘP RÙI
Cho các đường thẳng \(\left(d_1\right):y=4mx-\left(m+5\right)\) với \(m\ne0\)
\(\left(d_2\right):y=\left(3m^2+1\right)x+\left(m^2-9\right)\)
c, chứng minh khi m thay đổi thì đường thẳng \(\left(d_1\right)\) luôn đi qua điểm cố định A ; \(\left(d_2\right)\) đi qua điểm cố định B . Tính BA
Cho Parabol (P): \(y=\frac{x^2}{3}\) và đường thẳng (d) đi qua M(1; 12) với hệ số góc k. Tìm k biết đường thẳng (d) cắt (P) tại hai điểm \(A\left(x_1;y_1\right)\), \(B\left(x_2;y_2\right)\) thỏa mãn \(\frac{y_2}{x_1}+\frac{y_1}{x_2}\)
a}Cho đường thẳng (d):\(\left(m+2\right)x+\left(m-3\right)y-m-8=0\).Tìm m để khoảng cách từ O đến (d) lớn nhất.
Cho đường thẳng (d) y = (m+2)x + m (m là tham số)
a) Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m
b) Tìm m để (d) cắt trục Ox, Oy tại A và B sao cho SAOB = \(\dfrac{1}{2}\left(đvdt\right)\)