Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Diệu Linh
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
tran nguyen bao quan
18 tháng 11 2018 lúc 15:25

Ta có a=b+1\(\Rightarrow a-b=1\Rightarrow a>b\left(1\right)\)

\(b+1=c+2\Rightarrow b-c=1\Rightarrow b>c>0\left(2\right)\)

Từ (1),(2)\(\Rightarrow a>b>c>0\)

Ta lại có \(a-b=1\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=1\Leftrightarrow\sqrt{a}-\sqrt{b}=\dfrac{1}{\sqrt{a}+\sqrt{b}}< \dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\sqrt{a}-\sqrt{b}< \dfrac{1}{2\sqrt{b}}\Leftrightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}\)(3)

Chứng minh tương tự, ta có:\(b-c=1\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\Leftrightarrow\sqrt{b}-\sqrt{c}=\dfrac{1}{\sqrt{b}+\sqrt{c}}>\dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\dfrac{1}{2\sqrt{b}}< \sqrt{b}-\sqrt{c}\Leftrightarrow\dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)(4)

Từ (3),(4)\(\Rightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)

Nguyễn Phan gia kiệt
Xem chi tiết
misen
4 tháng 7 2021 lúc 10:07

a. M= √a .√b= √a.b= √2.8= 4

misen
4 tháng 7 2021 lúc 10:17

b. N= √c2 -1/c= √(√5 -2)2 -1/(√5 -2)= |√5 -2| -1/(√5 -2)= √5 -2 -1/√5 -2

= (√5 -2)2-1/(√5 -2)= (√5 -3)(√5 -1)/(√5 -2)

gọi t= √5 -2

= (t-1)(t+1)/t= t2-1/t =-1/t

=-1/√5 -2= 2+√5

Nguyễn Khánh Toàn
Xem chi tiết
tran nguyen bao quan
18 tháng 11 2018 lúc 15:25

Ta có a=b+1\(\Rightarrow a-b=1\Rightarrow a>b\left(1\right)\)

\(b+1=c+2\Rightarrow b-c=1\Rightarrow b>c>0\left(2\right)\)

Từ (1),(2)\(\Rightarrow a>b>c>0\)

Ta lại có \(a-b=1\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=1\Leftrightarrow\sqrt{a}-\sqrt{b}=\dfrac{1}{\sqrt{a}+\sqrt{b}}< \dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\sqrt{a}-\sqrt{b}< \dfrac{1}{2\sqrt{b}}\Leftrightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}\)(3)

Chứng minh tương tự, ta có:

\(b-c=1\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\Leftrightarrow\sqrt{b}-\sqrt{c}=\dfrac{1}{\sqrt{b}+\sqrt{c}}>\dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\dfrac{1}{2\sqrt{b}}< \sqrt{b}-\sqrt{c}\Leftrightarrow\dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)(4)

Từ (3),(4)\(\Rightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)

Học Tập
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
18 tháng 6 2017 lúc 17:25

Ta có : \(9^{x-1}=\frac{1}{9}\)

=> \(9^{x-1}=9^{-1}\)

=> x - 1 = -1

=> x = 0 

ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi 

=> 

Học Tập
18 tháng 6 2017 lúc 17:26

Cảm ơn bạn nha. Còn mấy phần kia bạn biết làm không?

l҉o҉n҉g҉ d҉z҉
18 tháng 6 2017 lúc 17:43

2) Ta có : \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)

\(\Leftrightarrow\sqrt{x^2-\sqrt{2}^2}+\sqrt{y^2+\sqrt{2}^2}+\left|x+y+z\right|=0\)

\(\Leftrightarrow\sqrt{x^2-2}+\sqrt{y^2+2}+\left|x+y+z\right|=0\)

Mà : \(\sqrt{x^2-1}\ge0\)\(\sqrt{y^2+2}\ge0\)\(\left|x+y+z\right|\ge0\)

Nên : \(\sqrt{x^2-1}=0;\sqrt{y^2+2};\left|x+y+z\right|=0\)

\(\Rightarrow\hept{\begin{cases}x^2-1=0\\y^2+2=0\\x+y+z=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=1\\y^2=-2\\z=0-x-y\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-\sqrt{2}\\z=0-1+\sqrt{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-\sqrt{2}\\z=-1+\sqrt{2}\end{cases}}}\)

Anh GoBi
Xem chi tiết
tran nguyen bao quan
18 tháng 11 2018 lúc 15:22

Ta có a=b+1\(\Rightarrow a-b=1\Rightarrow a>b\left(1\right)\)

\(b+1=c+2\Rightarrow b-c=1\Rightarrow b>c>0\left(2\right)\)

Từ (1),(2)\(\Rightarrow a>b>c>0\)

Ta lại có \(a-b=1\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=1\Leftrightarrow\sqrt{a}-\sqrt{b}=\dfrac{1}{\sqrt{a}+\sqrt{b}}< \dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\sqrt{a}-\sqrt{b}< \dfrac{1}{2\sqrt{b}}\Leftrightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}\)(3)

Chứng minh tương tự, ta có:\(b-c=1\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\Leftrightarrow\sqrt{b}-\sqrt{c}=\dfrac{1}{\sqrt{b}+\sqrt{c}}>\dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\dfrac{1}{2\sqrt{b}}< \sqrt{b}-\sqrt{c}\Leftrightarrow\dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)(4)

Từ (3),(4)\(\Rightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)

Linh Nguyễn Diệu
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 8:50

\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)

Nguyễn Thị Mai Anh
Xem chi tiết
Nguyễn Thị Mai Anh
17 tháng 3 2018 lúc 5:05

Mình sửa lại chút nhé. tìm x,  y là các số hữu tỉ

ánh tuyết nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 23:00

Câu 2:

\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)

\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)

\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)

=>(n+1)(n+2-8-4)=0

=>n=-1(loại) hoặc n=10

=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)

SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)

Số hạng chứa x^26 tương ứng với 11k-40=26

=>k=6

=>Số hạng cần tìm là: \(210x^{26}\)