Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Chứng minh rằng: \(2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\) biết a; b; c là 3 số thực thoả mãn điều kiện a=b+1=c+2 ; c > 0

tran nguyen bao quan
18 tháng 11 2018 lúc 15:25

Ta có a=b+1\(\Rightarrow a-b=1\Rightarrow a>b\left(1\right)\)

\(b+1=c+2\Rightarrow b-c=1\Rightarrow b>c>0\left(2\right)\)

Từ (1),(2)\(\Rightarrow a>b>c>0\)

Ta lại có \(a-b=1\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=1\Leftrightarrow\sqrt{a}-\sqrt{b}=\dfrac{1}{\sqrt{a}+\sqrt{b}}< \dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\sqrt{a}-\sqrt{b}< \dfrac{1}{2\sqrt{b}}\Leftrightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}\)(3)

Chứng minh tương tự, ta có:\(b-c=1\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\Leftrightarrow\sqrt{b}-\sqrt{c}=\dfrac{1}{\sqrt{b}+\sqrt{c}}>\dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\dfrac{1}{2\sqrt{b}}< \sqrt{b}-\sqrt{c}\Leftrightarrow\dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)(4)

Từ (3),(4)\(\Rightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)


Các câu hỏi tương tự
Nguyễn Khánh Toàn
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Vương Thiên Nhi
Xem chi tiết
Uchiha Itachi
Xem chi tiết
Uchiha Itachi
Xem chi tiết
:vvv
Xem chi tiết
Đào Thị Huyền
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
dia fic
Xem chi tiết