a) Tìm Giá trị nhỏ nhất A= (2x+\(\dfrac{1}{3}\))\(^4-1\)
b) Tìm Giá trị lớn nhất B= -\(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
Tìm giá trị lớn nhất , giá trị nhỏ nhất của biểu thức :
a)\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\)
b)B=\(\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\)
c)C=\(-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
Ai lm đc câu nào thì giúp mk với , cảm ơn !!
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
a: \(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{5}\)
Tìm giá trị lớn nhất, nhỏ nhất (nếu có)
a) A = \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
b) B = \(\dfrac{4}{\left(x-\dfrac{2}{3}\right)^2+9}\)
a: \(A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Tìm x để biểu thức:
a) A= 0,6 + \(\left|\dfrac{1}{2}-x\right|\) đạt giá trị nhỏ nhất
b) B= \(\dfrac{2}{3}\) - \(\left|2x+\dfrac{2}{3}\right|\) đạt giá trị lớn nhất
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)
tìm giá trị nhỏ nhất của A và giá trị lớn nhất của B:
A=\(|x-\dfrac{1}{2}|-3\)
B=\(\dfrac{2}{3}-\left|x-4\right|\)
a)Vì |x-1/2|≥0
|x-1/2|-3≥0-3
A=|x-1/2|-3≥-3
=>A≥-3
Dấu ''='' xảy ra khi
x-1/2=0
x=0+1/2
x=1/2
Vậy GTNN của biểu thức đã cho là -3 khi x=1/2
b)
Vì |x-4|≥0
-|x-4|≤0
=>2/3-|x-4|≤2/3-0
2/3-|x-4|≤2/3
=>B=2/3-|x-4|≤2/3
B≤2/3
Dấu ''='' xảy ra khi
x-4=0
x=0+4
x=4
Vậy GTLN của biểu thức là 2/3 khi x=4
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:
C = \(-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
\(C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\)
mà \(-2\left|\dfrac{1}{3}x+4\right|\le0,\forall x\)
\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\le\dfrac{5}{3}\)
\(\Rightarrow GTLN\left(C\right)=\dfrac{5}{3}\left(tạix=-12\right)\)
Cho \(P=\left(\dfrac{x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{x^2-2x+4}{x^2-4}\right):\dfrac{4}{x+2}\)
a ) Rút gọn P
b ) Tìm x để P<0
c ) Tìm x để \(P=\dfrac{1}{x}+1\)
d ) Tính P khi \(\left|2x-1\right|=3\)
e ) Tính giá trị nhỏ nhất của P
`a)P=(x/(x+2)-(x^3-8)/(x^3+8)*(x^2-2x+4)/(x^2-4)):4/(x+2)`
`đk:x ne 0,x ne -2`
`P=(x/(x+2)-((x-2)(x^2+2x+4))/((x+2)(x^2-2x+4))*(x^2-2x+4)/((x-2)(x+2)))*(x+2)/4`
`=(x/(x+2)-(x^2+2x+4)/(x+2)^2)*(x+2)/4`
`=(x^2+2x-x^2-2x-4)/(x+2)^2*(x+2)/4`
`=-4/(x+2)^2*(x+2)/4`
`=-1/(x+2)`
`b)P<0`
`<=>-1/(x+2)<0`
Vì `-1<0`
`<=>x+2>0`
`<=>x> -2`
`c)P=1/x+1(x ne 0)`
`<=>-1/(x+2)=1/x+1`
`<=>1/x+1+1/(x+2)=0``
`<=>x+2+x(x+2)+x=0`
`<=>x^2+4x+2=0`
`<=>` \(\left[ \begin{array}{l}x=\sqrt2-2\\x=-\sqrt2-2\end{array} \right.\)
`d)|2x-1|=3`
`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2(l)\\x=-1(tm)\end{array} \right.\)
`x=-1=>P=-1/(-1+2)=-1`
`e)P=-1/(x+2)` thì nhỏ nhất cái gì nhỉ?
a) đk: \(x\ne-2;2\)
\(P=\left[\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x+2}\)
= \(\left[\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right].\dfrac{x+2}{4}\)
= \(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}\) = \(\dfrac{-4}{4\left(x+2\right)}=\dfrac{-1}{x+2}\)
b) Để P < 0
<=> \(\dfrac{-1}{x+2}< 0\)
<=> x +2 > 0
<=> x > -2 ( x khác 2)
c) Để P= \(\dfrac{1}{x}+1\)
<=> \(\dfrac{-1}{x+2}=\dfrac{1}{x}+1\)
<=> \(\dfrac{1}{x}+\dfrac{1}{x+2}+1=0\)
<=> \(\dfrac{x+2+x+x\left(x+2\right)}{x\left(x+2\right)}=0\)
<=> x2 + 4x + 2 = 0
<=> (x+2)2 = 2
<=> \(\left[{}\begin{matrix}x=\sqrt{2}-2\left(c\right)\\x=-\sqrt{2}-2\left(c\right)\end{matrix}\right.\)
d) Để \(\left|2x-1\right|=3\)
<=> \(\left[{}\begin{matrix}2x-1=3< =>x=2\left(l\right)\\2x-1=-3< =>x=-1\left(c\right)\end{matrix}\right.\)
Thay x = -1, ta có:
P = \(\dfrac{-1}{-1+2}=-1\)
a) ĐKXĐ: \(x\ne2;-2\)
\(P=\left(\dfrac{x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{x^2-2x+4}{x^2-4}\right):\dfrac{4}{x+2}\)
\(=\left(\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{4}{x+2}\)
\(=\left(\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{x+2}.\dfrac{1}{x+2}\right):\dfrac{4}{x+2}\)
\(=\left(\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right):\dfrac{4}{x+2}\)
\(=\dfrac{x\left(x+2\right)-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}=-\dfrac{4}{\left(x+2\right)^2}.\dfrac{x+2}{4}=-\dfrac{1}{x+2}\)
b) \(P< 0\Rightarrow-\dfrac{1}{x+2}< 0\Rightarrow x+2>0\Rightarrow x>-2\)
\(\Rightarrow x>-2;x\ne2\)
c) \(P=\dfrac{1}{x}+1\Rightarrow\dfrac{-1}{x+2}=\dfrac{x+1}{x}\Rightarrow-x=\left(x+2\right)\left(x+1\right)\)
\(\Rightarrow-x=x^2+3x+2\Rightarrow x^2+4x+2=0\)
\(\Delta=4^2-2.4=8\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-4-2\sqrt{2}}{2}=-2-\sqrt{2}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-4+2\sqrt{2}}{2}=-2+\sqrt{2}\end{matrix}\right.\)
d) \(\left|2x-1\right|=3\Rightarrow\left[{}\begin{matrix}2x-1=3\\1-2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}P=-\dfrac{1}{2+2}=-\dfrac{1}{4}\\P=-\dfrac{1}{-1+2}=-1\end{matrix}\right.\)
Tìm giá trị lớn nhất (GTNN) của các biểu thức sau:
A= \(\dfrac{4+5\left|1-2x\right|}{7}\)
B= \(\dfrac{x^2+4x-6}{3}\)
C= \(\dfrac{5}{x^2-2x+3}\)