a/ Vì: \(\left(2x+\dfrac{1}{3}\right)^4\ge0\) với mọi x
=> \(\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
dấu ''='' xảy ra khi :
\(2x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{6}\)
Vậy MinA = -1 <=> \(x=-\dfrac{1}{6}\)
b/ Vì: \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\ge0\Rightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0\)
=> \(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)
dấu ''='' xảy ra khi :
\(-\dfrac{4}{9}x-\dfrac{2}{15}=0\Leftrightarrow x=-\dfrac{3}{10}\)
vậy MaxB = 3 khi \(x=-\dfrac{3}{10}\)