Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Minh Phúc
Xem chi tiết
ILoveMath
22 tháng 1 2022 lúc 21:41

Coi như a, b, c là số dương

Áp dụng BĐT Cô-si ta có:

\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)

Dấu "=" xảy ra ...

\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)

Dấu "=" xảy ra ...

\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)

Dấu "=" xảy ra ...

Từ (1), (2), (3) ta có:

\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Dấu "=" xảy ra ...

Vậy ...

ILoveMath
22 tháng 1 2022 lúc 21:35

a, b, c có phải là số dương không bạn, nếu không thì làm sao dùng BĐT Cô-si được

Phùng Minh Phúc
Xem chi tiết
Akai Haruma
23 tháng 1 2022 lúc 16:40

Lời giải:

Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:

$a+b\geq 2\sqrt{ab}$

$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$

$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$

Ta có đpcm 

Dấu "=" xảy ra khi $a=b$

蝴蝶石蒜
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2021 lúc 20:07

BĐT cần chứng minh tương đương:

\(\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

Nguyễn Susari
13 tháng 6 2021 lúc 20:00

Áp dụng bất đẳng thức Cô-si ta có:

\((a+b)\ge 2\sqrt{ab}\)

\(\left(\dfrac1a+\dfrac1b\right)\ge 2\sqrt{\dfrac1{ab}}\)

\(\Rightarrow (a+b)\left(\dfrac1a+\dfrac1b\right) \ge 2\sqrt{ab}2\sqrt{\dfrac1{ab}}=4\) (đpcm)

Dấu \("="\) xảy ra khi \(a=b\)

Yeutoanhoc
13 tháng 6 2021 lúc 20:00

Áp dụng BĐT với hai số dương ta có:

`a+b>=2sqrt{ab}`

`1/a+1/b>=2/sqrt{ab}`

`=>(a+b)(1/a+1/b)>=2sqrt{ab}. 2/sqrt{ab}=4`

Dấu "=" xảy ra khi `a=b>0`

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 21:14

Biến đổi tương đương:

\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+b^2+2ab\ge4ab\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

Thai Nguyen
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
14 tháng 8 2018 lúc 10:38

Bạn tham khảo cách chứng minh tại đây :

Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến

Áp dụng : Theo BĐT \(AM-GM\) ta có :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)

Dấu \("="\) xảy ra khi \(a=b=c\)

Đổng Ngạc Lương Tịch
Xem chi tiết
Ánh Dương
Xem chi tiết
Nguyễn Ngọc Lộc
8 tháng 5 2021 lúc 16:28

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

Có : \(a,b\ge0\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )

Vậy ...

Hoang Tran
Xem chi tiết
An Thy
27 tháng 7 2021 lúc 8:44

\(P=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}\) (BĐT Cauchy Schwarz)

\(=\dfrac{9}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}\)

\(=\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}+\dfrac{7}{ab+bc+ca}\)

\(\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2ac+2bc}+\dfrac{7}{ab+bc+ca}\)

\(=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}\)

Ta có: \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\) .Thế vào biểu thức

\(\Rightarrow P\ge9+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)

\(\Rightarrow P_{min}=30\) khi \(a=b=c=\dfrac{1}{3}\)

Hồ Thị Hồng Nghi
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 8:10

Áp dụng BĐT cosi:

\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)

Dấu \("="\Leftrightarrow a=b=c\)