cho hình vẽ ABCD tính BC BD DC AD
Cho hình thang ABCD có góc A = góc D = 90 độ . Đường chéo BD vuông góc với BC , AD = 12 , DC = 25 . Tính AB , BC , BC
Vẽ hình và trình bày cách làm nha
cho hình thang ABCD (AB//CD) có góc BAD=góc CBD . BIẾT AB=4cm , DC=9cm
a) chứng minh tam giác ABD đồng dạng với tam giác BDC . Tính BD
b) vẽ BE//AD cắt AC tại F . Chứng minh AB.AD=DC.BE
c) vẽ AF//BC cắt BD tại F . Chứng minh EF//DC
Cho hình thang ABCD có góc BAD = góc CBD. Biết AB = 4cm; DC = 9cm.
a) Chứng minh tam giác ABD ~ tam giác BDC. Tính BD
b) Vẽ BE // AD cắt AC tại E. Chứng minh AB.AD = DC.BE
c) Vẽ À // BC cắt BD tại F. Chứng minh EF // DC
a, Xét tam giác ABD và tam giác BDC ta có :
^BAD = ^CBD ( gt )
^ABD = ^BDC ( so le trong )
Vậy tam giác ABD ~ tam giác BDC ( g.g )
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\)( tỉ số đồng dạng ) \(\Rightarrow BD^2=AB.DC=4.9=36\)
\(\Rightarrow BD=\sqrt{36}=6\)cm
b, Gọi giao điểm AC và BD là I
Xét tam giác BIE và tam giác AID có : BE // AD
Theo hệ quả Ta lét ta có : \(\frac{BI}{ID}=\frac{IE}{IA}=\frac{BE}{AD}\)
Xét tam giác AIB và tam giác DIC có AB // CD ( ABCD là hình thang )
\(\frac{AI}{IC}=\frac{IB}{ID}=\frac{AB}{DC}\)
mà \(\frac{BE}{AC}=\frac{AB}{DC}=\frac{IB}{ID}\Rightarrow BE.DC=AB.AC\)
Cho hình thang cân ABCD có AB // DC và AB<DC, đường chéo BD vuông góc với cạnh bên BC. Vẽ đường cao BH
a) Chứng minh △BDC đồng dạng với △HBC
b) Cho BC= 15cm, DC= 25cm. Tính HC và HD
c) Tính diện tích hình thang ABCD
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
=>ΔBDC đồng dạng vói ΔHBC
b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)
HC=15^2/25=9cm
HD=25-9=16cm
Cho ABCD là hình thang vuông tại A và D. Đường chéo BD vuông góc với BC. Biết AD = 12cm, DC = 25cm. Tính độ dài AB, BC và BD
Áp dụng các hệ thức lượng trong tam giác vuông BDC cùng chú ý độ dài đường cao hạ từ B xuống CD bằng AD, ta tính được : AB = 9cm, BD =15cm, hoặc AB = 16cm, BC = 15cm, BD = 20cm
Cho hình thang ABCD có AB//CD và AB<CD. Từ A vẽ đường thẳng // BC, cắt BD tại M và DC tại K. Kẻ BF//AD (FϵDC), kẻ FP//BD (PϵBC). C/m:
a, DF=KC
b,CP.CD = DK.AK
c,MP//DC
a: Xét tứ giác ABFD có
AB//FD
BF//AD
=>ABFD là hình bình hành
=>AB=DF
Xét tứ giác ABCK có
AB//CK
AK//BC
=>ABCK là hình bình hành
=>AB=CK=DF
c: Xet ΔMAB và ΔMKD có
góc MAB=góc MKD
góc AMB=góc KMD
=>ΔMAB đồng dạng với ΔMKD
=>MB/MD=AB/KD
BP/PC=DF/FC
mà KD=FC
và AB=DF
nên MB/MD=BP/PC
=>MP//DC
Cho hình thang ABCD ( AB//CD) có A=90°, AD = 10 cm DC= 20 cm Biết đường chéo BD và cạnh bên BC Vương nhau .Tính BD
Kẻ thêm đường cao BH xuống DC \(\left(H\in DC\right)\)
Dễ thấy \(ABHD\) là hcn nên \(AD=BH=10\left(cm\right)\)
Áp dụng HTL cho ...
\(BH^2=DH\cdot HC\Rightarrow HD\cdot HC=100\)
Mà \(HD+HC=CD=20\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}HD\cdot HC=100\\HD+HC=20\end{matrix}\right.\Rightarrow HD=HC=10\)
Ta có \(BD=\sqrt{HD^2+HB^2}=\sqrt{10^2+10^2}=10\sqrt{2}\left(cm\right)\left(pytago\right)\)
Cho ABCD là hình thang vuông tại A và D. Đường chép BD vuông góc với BC. Biết AD = 10cm, DC = 20cm. Tính độ dài BC.
A. BC = 10 cm
B. BC = 10 2 cm
C. BC = 10cm
D. BC = 110 cm
Kẻ BE ⊥ CD tại E
Suy ra tứ giác ABED là hình chữ nhật (vì A ^ = D ^ = E ^ = 90 ∘ ) nên BE = AD = 12cm
Đặt EC = x (0 < x < 20) thì DE = 20 – x
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông BCD ta có:
B E 2 = E D . E C ⇔ x(20 – x) = 100 ⇔ x 2 - 20 X + 100 = 0
⇔ ( x - 10 ) 2 = 0 ⇔ x = 10 (tm)
Với EC = 10, theo định lý Pytago ta có BC = B E 2 + E C 2 = 10 2 + 10 2 = 10 2
Vậy BC = 10 2 cm
Đáp án cần chọn là: B
Cho ABCD là hình tháng vuông A và D. Đường chéo BD vuông góc với BC. Biết AD = 12cm, DC = 25cm. Tính độ dài BC, biết BC < 20
A. BC = 15cm
B. BC = 16cm
C. BC = 14cm
D. BC = 17cm
Kẻ BE ⊥ CD tại E
Suy ra tứ giác ABED là hình chữ nhật (vì A ^ = D ^ = E ^ = 90 ∘ ) nên BE = AD = 12cm
Đặt EC = x (0 < x < 25) thì DE = 25 – x
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông BCD ta có:
B E 2 = E D . E C ⇔ x ( 25 - x ) = 144 ⇔ x 2 - 25 x + 144 = 0
x 2 - 16 x - 9 x + 144 = 0 <=> x(x – 16) – 9(x – 16) = 0 <=> (x – 16)(x – 9) = 0
⇔ x = 16 x = 9 (thỏa mãn)
Với EC = 16, theo định lý Pytago ta có BC = B E 2 + E C 2 = 12 2 + 16 2 = 20 (loại)
Với EC = 9, theo định lý Pytago ta có BC = B E 2 + E C 2 = 12 2 + 9 2 = 15 (nhận)
Vậy BC = 15cm
Đáp án cần chọn là: A