Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi bao tien
Xem chi tiết
Nguyễn Hưng Phát
21 tháng 7 2018 lúc 16:30

\(8\left(x-2010\right)^2\ge0\Rightarrow36-y^2\ge0\)

\(\Rightarrow36\ge y^2\)\(\Rightarrow y^2\in\left\{0,1,4,9,16,25,36\right\}\)

 Xét \(y^2=0\Rightarrow8\left(x-2010\right)^2=36\Rightarrow\left(x-2010\right)^2=\frac{36}{8}=\frac{9}{2}\)(loại)

Xét \(y^2=1\Rightarrow8\left(x-2010\right)^2=36-1=35\Rightarrow\left(x-2010\right)^2=\frac{35}{8}\)(loại)

Bạn xét tiếp nha :))

Edogawa Conan
19 tháng 6 2019 lúc 21:37

Ta có: (x - 2010)2 \(\ge\)\(\forall\) x <=> 8(x - 2010)2 \(\ge\)\(\forall\)x

<=>36 - y2 \(\ge\)0

<=> 36 \(\ge\)y2

<=> y2 \(\le\)36

<=> |y| \(\le\)6

Do y \(\in\)N  => 0 \(\le\)y < 6

+) Với y = 0 => 36 - 02 = 8(x - 2010)2

=> 36 = 8(x - 2010)2

=> (x - 2010)2 = 36 : 8 (ko thõa mãn)

+) Với y = 1 => 36 - 12 = 8(x - 2010)2

=> 35 = 8(x - 2010)2

=> (x - 2010)2 = 35 : 8 (ko thõa mãn)

+) Với y = 2 => 36 - 22 = 8(x - 2010)2

=> 32 = 8(x - 2010)2

=> (x - 2010)2 = 32 : 8

=> (x - 2010)2 = 4 = 22

=> \(\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}}\)

=> \(\orbr{\begin{cases}x=2012\\x=2008\end{cases}}\)

+) Với y = 3 => 36 - 32 = 8(x - 2010)2

=> (x - 2010)2 = 27 : 8 (ko thõa mãn)

+) Với y = 4 => 36 - 42 = 8(x - 2010)2

=> (x - 2010)2 = 20 : 8 (ko thõa mãn)

+) Với y = 5 => 36 - 52 = 8(x - 2010)2

=> (x - 2010)2 = 11 : 8 (ko thõa mãn)

Vậy ...

0o0_Đừng_Nhìn_Mình_0o0
Xem chi tiết
Wendy ~
Xem chi tiết
Vũ Minh Tuấn
12 tháng 1 2020 lúc 21:10

Tham khảo:

Chúc bạn học tốt!

Khách vãng lai đã xóa
Sách Giáo Khoa
12 tháng 1 2020 lúc 21:10

Bạn có thể tham khảo nhé ! Câu hỏi của Kudo shinichi - Toán lớp 7 | Học trực tuyến - Hoc24
Khách vãng lai đã xóa
Roxie
13 tháng 1 2020 lúc 13:09

Ta cs :(bn viết lại đề vào chỗ này)

=>25-8.(x-2010)2=y2 (1)

\(y^2\ge0\Rightarrow\left(x-2010\right)^2\le\frac{25}{8}\)

Lại cs:(x-2010)2 là số chính phương và (x-2010)2\(\le\) 3,125

=>(x-2020)2\(\in\left\{0;1\right\}\)

\(\left[{}\begin{matrix}\left(x-2010^2\right)=0\\\left(x-2010\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2010\\x=2011\end{matrix}\right.\)

TH1 :vs (x-2010)2=0 thì thay vào(1) ta đc

25-8.0=y^2=>25=y^2 Mà y \(\in N\)=>y \(\in\left\{5\right\}\)

TH2:vs( x-2010)^2=1

=>25-8=y^2=>7=y^2=>ko cs giá trị vì y thuộc N

Vây x=2010,y=5

Khách vãng lai đã xóa
Giúp Với
Xem chi tiết
An Lê Khánh
12 tháng 4 2017 lúc 14:40

y = 2 ; x = 2012

Nguyễn Xuân Tiến 24
19 tháng 4 2017 lúc 21:18

ta có: 8(x-2010)2+y2=36

Do y2\(\ge\)0\(\Rightarrow\)(x-2010)2\(\le\)\(\dfrac{36}{8}\)

Do đó (x-2010)2 \(\in\) {0;1;4}.

Với (x-2010)2=0.Suy ra x=2010

và y2=36 nên y=6.

Với (x-2010)2=1.suy ra x=2011 và

y2=36-8=28 (loại)

Với (x-2010)2=4.Suy ta x=2012 và

y2=36-32=4.Suy ra y=2

Vậy ta có các cặp (x;y) thuộc N sau

(2010;6) ; (2012;2)

hoàng nguyễn phương thảo
Xem chi tiết
hanhuyen trinhle
19 tháng 2 2019 lúc 21:39
https://i.imgur.com/G028SlE.jpg
Hoàng Trần Trà My
Xem chi tiết
Bùi Thị Vân
27 tháng 11 2017 lúc 9:23

Bài toán yêu cầu tìm nghiệm nguyên phải không bạn?

piojoi
Xem chi tiết
Toru
2 tháng 9 2023 lúc 22:24

Ta có: \(y^2\ge0\forall y\in Z\)

\(\Rightarrow-y^2\le0\forall y\in Z\)

\(\Rightarrow36-y^2\le36\forall y\in Z\)

mà \(36-y^2=8\left(x-2010\right)^2\) (*)

nên \(8\left(x-2010\right)^2\le36\forall x\in Z\)

\(\Rightarrow\left(x-2010\right)^2\le\dfrac{36}{8}< 5\)

Mặt khác: \(\left(x-2010\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;2;3;4\right\}\)   (1)

Lại có: \(x\in Z\) nên \(x-2010\in Z\) (2)

Từ (1) và (2) \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\)

+, Với \(x-2010=0\Leftrightarrow x=2010\) , (*) trở thành:

\(36-y^2=0\)

\(\Rightarrow y^2=36\Rightarrow\left[{}\begin{matrix}y=6\\y=-6\end{matrix}\right.\left(tm\right)\)

+, Với \(\left(x-2010\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x-2010=1\\x-2010=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2011\\x=2009\end{matrix}\right.\)

Khi đó: (*) ⇔ \(36-y^2=8\)

\(\Rightarrow y^2=28\Rightarrow y=\pm\sqrt{28}\left(ktm\right)\)

+, Với \(\left(x-2010\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-2010=2\\x-2010=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2010\\x=2008\end{matrix}\right.\)

Khi đó: (*) ⇔ \(36-y^2=8\cdot4\)

\(\Rightarrow y^2=4\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\left(tm\right)\)

Vậy ...

toán khó mới hay
Xem chi tiết
Huy Nguyễn Đức
12 tháng 3 2017 lúc 14:18

đặt 2009-x=a,x-2010=b

suy ra a^2+ab+b^2/a^2-ab+b^2=19/49 

suy ra 49(a^2+ab+b^2)=19(a^2-ab+b^2)

49a^2+49ab+49b^2=19a^2-19ab+19b^2

30a^2+68ab+30b^2=0

30a^2+50ab+18ab+30b^2=0

10a(3a+5b)+6b(3a+5b)=0

(3a+5b)(10a+6b)=0

suy ra 3a+5b=0 hoặc 10a+6b=0 

thế vào lại rồi tìm x 

lutufine 159732486
Xem chi tiết