Tìm x
a) (3x+1)(4x-2)-12x(x-3)=5
b) (2x+1)(4x-2)-(8x+2)(x+5)=4
Bài 1:Rút gọn biểu thức
a.(x-2)(2x-1)-(2x-3)(x-1)-2
b. x(x+3y+1) -2y (x-1) - (y+x+1)x
Bài 2: Tìm x
a. (14x^3 + 12x^2 -14x) :2x = (x+2) (3x-4)
b. (4x - 5) (6x+1) - (8x+3) (3x-4) =15
Bài 1.
a)
\((x-2)(2x-1)-(2x-3)(x-1)-2\\=2x^2-x-4x+2-(2x^2-2x-3x+3)-2\\=2x^2-5x+2-(2x^2-5x+3)-2\\=2x^2-5x+2-2x^2+5x-3-2\\=(2x^2-2x^2)+(-5x+5x)+(2-3-2)\\=-3\)
b)
\(x(x+3y+1)-2y(x-1)-(y+x+1)x\\=x^2+3xy+x-2xy+2y-xy-x^2-x\\=(x^2-x^2)+(3xy-2xy-xy)+(x-x)+2y\\=2y\)
Bài 2.
a)
\((14x^3+12x^2-14x):2x=(x+2)(3x-4)\\\Leftrightarrow 14x^3:2x+12x^2:2x-14x:2x=3x^2-4x+6x-8\\ \Leftrightarrow 7x^2+6x-7=3x^2+2x-8\\\Leftrightarrow (7x^2-3x^2)+(6x-2x)+(-7+8)=0\\\Leftrightarrow 4x^2+4x+1=0\\\Leftrightarrow (2x)^2+2\cdot 2x\cdot 1+1^2=0\\\Leftrightarrow (2x+1)^2=0\\\Leftrightarrow 2x+1=0\\\Leftrightarrow 2x=-1\\\Leftrightarrow x=\frac{-1}2\)
b)
\((4x-5)(6x+1)-(8x+3)(3x-4)=15\\\Leftrightarrow 24x^2+4x-30x-5-(24x^2-32x+9x-12)=15\\\Leftrightarrow 24x^2-26x-5-(24x^2-23x-12)=15\\\Leftrightarrow 24x^2-26x-5-24x^2+23x+12=15\\\Leftrightarrow -3x+7=15\\\Leftrightarrow -3x=8\\\Leftrightarrow x=\frac{-8}3\\Toru\)
tìm x
a(14x^3+12x^2-14x):2x=(x+2)(3x-4)
b(4x−5)(6x+1)−(8x+3)(3x−4)=15
a: ĐKXD: x<>0
\(\dfrac{14x^3+12x^2-14x}{2x}=\left(x+2\right)\left(3x-4\right)\)
=>\(\dfrac{2x\left(7x^2+6x-7\right)}{2x}=\left(x+2\right)\left(3x-4\right)\)
=>\(7x^2+6x-7=3x^2-4x+6x-8\)
=>\(7x^2+6x-7=3x^2+2x-8\)
=>\(4x^2+4x+1=0\)
=>\(\left(2x+1\right)^2=0\)
=>2x+1=0
=>x=-1/2(nhận)
b: \(\left(4x-5\right)\left(6x+1\right)-\left(8x+3\right)\left(3x-4\right)=15\)
=>\(24x^2+4x-30x-5-\left(24x^2-32x+9x-12\right)=15\)
=>\(24x^2-26x-5-24x^2+23x+12=15\)
=>-3x+7=15
=>-3x=8
=>\(x=-\dfrac{8}{3}\)
Tìm x
a, 3(x-1)^2-3x(x-5)=2
b, 4x^2-12x=-9
c, (2x-3)^2=(x+5)^2
d, (x^4-2x^3+4x^2-8x)÷(x^2+4)-2x=-4
e, x-2/2-x+3/3+x+4/5-x+5=0
\(a.3\left(x^2-2x+1\right)-3x^2+15x-2=0\)
\(3x^2-6x+3-3x^2+15x-2=0\)
\(9x+1=0\)
\(x=-\frac{1}{9}\)
\(b.4x^2-12x+9=0\)
\(4x^2-6x-6x+9=0\)
\(2x\left(x-3\right)-3\left(x-3\right)=0\)
\(\left(2x-3\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=3\end{cases}}\)
\(c.\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\left(x-8\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)
a) 3(x - 1)2 - 3x(x - 5) = 2
=> 3(x2 - 2x + 1) - 3x2 + 15x = 2
=> 3x2 - 6x + 3 - 3x2 + 15x = 2
=> 9x = 2 - 3
=> 9x = -1
=> x = -1/9
b) 4x2 - 12x = -9
=> 4x2 - 12x + 9 = 0
=> (2x - 3)2 = 0
=> 2x - 3 = 0
=> 2x = 3
=> x = 3/2
c) (2x - 3)2 = (x + 5)2
=> (2x - 3)2 - (x + 5)2 = 0
=> (2x - 3 - x - 5)(2x - 3 + x + 5) = 0
=> (x - 8)(3x + 2) = 0
=> \(\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)
d) \(\left(x^4-2x^3+4x^2-8x\right):\left(x^2+4\right)-2x=-4\)
=> \(\left[x^3\left(x-2\right)+4x\left(x-2\right)\right]:\left(x^2+4\right)-2x=-4\)
=> \(x\left(x-2\right)\left(x^2+4\right):\left(x^2+4\right)-2x=-4\)
=> \(x^2-2x-2x+4=0\)
=> \(\left(x-2\right)^2=0\)
=> x - 2 = 0
=> x = 2
e) khđ
Giai PT a, 6/x^2-1 + 5 = 8x-1/4x+4 - 12x-1/4-4x
b, 2x+1/2x-1 - 2x-1/2x+1 = 8/4x^2 -1
c, 3/2x-16 + 3x-20/x-8 + 1/8 = 13x-102/3x-24
d, x+4/x^2-3x+2 - x+1/x^2 -4x+3 = 2x+5/x^2-4x+3
Giải các phương trình sau
a)\(x^3+8x=5x^2+4\)
b) \(x^3+3x^2=x+6 \)
c)\(2x+3\sqrt{x}=1\)
4) \(x^4+4x^2+1=3x^3+3x\)
5)\((12x-1)(6x-1)(4x-1)(3x-1)=330\)
a: \(x^3+8x=5x^2+4\)
=>\(x^3-5x^2+8x-4=0\)
=>\(x^3-x^2-4x^2+4x+4x-4=0\)
=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
=>\(\left(x-1\right)\left(x-2\right)^2=0\)
=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: \(x^3+3x^2=x+6\)
=>\(x^3+3x^2-x-6=0\)
=>\(x^3+2x^2+x^2+2x-3x-6=0\)
=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
3: ĐKXĐ: x>=0
\(2x+3\sqrt{x}=1\)
=>\(2x+3\sqrt{x}-1=0\)
=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)
=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)
=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)
=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)
=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)
4: \(x^4+4x^2+1=3x^3+3x\)
=>\(x^4-3x^3+4x^2-3x+1=0\)
=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)
=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)
=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
a.
\(x^3+8x=5x^2+4\)
\(\Leftrightarrow x^3-5x^2+8x-4=0\)
\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b.
\(x^3+3x^2-x-6=0\)
\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)
\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)
c.
\(2x+3\sqrt{x}+1=0\)
ĐKXĐ: \(x\ge0\)
Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}2x\ge0\\3\sqrt{x}\ge0\end{matrix}\right.\)
\(\Rightarrow2x+3\sqrt{x}+1>0\)
Pt đã cho vô nghiệm
d.
\(x^4+4x^2+1=3x^3+3x\)
\(\Leftrightarrow x^4-3x^3+4x^2-3x+1=0\)
- Với \(x=0\) ko phải nghiệm
- Với \(x\ne0\) chia cả 2 vế của pt cho \(x^2\)
\(\Rightarrow x^2-3x+4-\dfrac{3}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)-3\left(x+\dfrac{1}{x}\right)+2=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)
Đặt \(x+\dfrac{1}{x}=t\)
\(\Rightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-2x+1=0\end{matrix}\right.\)
\(\Rightarrow x=1\)
Dùng phương pháp đặt biến số phụ, phân tích các đa thức sau thành nhân tử
a. (x^2 + x)^2 - 2(x^2 + x) - 15
b. (x+2)(x+3)(x+4)(x+5) - 24
c. (x^2 + 8x + 7)(x^2 + 8x + 15) + 15
d. (x^2 + 3x + 1)(x^2 + 3x + 2) - 6
e. (4x+1)(12x-1)(3x+2)(x+1) - 4
f. 4(x+5)(x+6)(x+10)(x+12) - 3x^2
g. 3x^6 - 4x^5 + 2x^4 - 8x^3 + 2x^2 - 4x + 3
thực hiện phép chia
a (4x^5-8x^3):(-2x^3)
b(9x^3-12x^2 + 3x ) : (-3x)
c (xy^2 + 4x^2y^3 -3x^2y^4):(-1/2x^2y^3)
d[2(x-y)^3-7(y-x)^2 - (y-x)] : (x-y)
e[(x^3 - y) ^5 -2(x-y)^4 + 3(x-y)^2] :[5(x-y)^2]
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\frac{x+4}{x^2-3x+2}-\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)