Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Không Biết Gì
Xem chi tiết
Ngô Thành Chung
12 tháng 1 2021 lúc 21:23

Gọi G là trọng tâm ΔABC

⇒ VT = 6MG

VP  = \(\left|2\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)+\overrightarrow{MC}-\overrightarrow{MA}\right|\)

VP = \(\left|6\overrightarrow{MG}+\overrightarrow{AC}\right|\)

Xác định điểm I sao cho \(6\overrightarrow{IG}+\overrightarrow{AC}=\overrightarrow{0}\) (cái này chắc bạn làm được)

VP = \(\left|6\overrightarrow{MI}+6\overrightarrow{IG}+\overrightarrow{AC}\right|\)

VP = 6 MI

Khi VT = VP thì MG = MI

⇒ M nằm trên đường trung trực của IG

Tập hợp các điểm M : "Đường trung trực của IG"

Khoẻ Nguyển Minh
Xem chi tiết
Phạm Thị Phương
Xem chi tiết
Akai Haruma
14 tháng 8 2021 lúc 1:47

Lời giải:

a.

\(|\overrightarrow{MC}|=|\overrightarrow{MA}-\overrightarrow{MB}|=|\overrightarrow{BA|}\)

Tập hợp điểm $M$ thuộc đường tròn tâm $C$ đường bán kính $AB$

b. Gọi $I$ là trung điểm $AB$. Khi đó:

\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|\)

\(=|2\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}|=|2\overrightarrow{MI}|=0\)

\(\Leftrightarrow |\overrightarrow{MI}|=0\Leftrightarrow M\equiv I\)

Vậy điểm $M$ là trung điểm của $AB$

 

 

Akai Haruma
14 tháng 8 2021 lúc 1:52

c.

Trên tia đối của tia $CA$ lấy $K$ sao cho $KC=\frac{1}{3}CA$

\(|\overrightarrow{MA}|=2|\overrightarrow{MC}|\Leftrightarrow |\overrightarrow{MK}+\overrightarrow{KA}|=2|\overrightarrow{MK}+\overrightarrow{KC}|\)

\(\Leftrightarrow |\overrightarrow{MK}+4\overrightarrow{KC}|=|2\overrightarrow{MK}+2\overrightarrow{KC}|\)

\(\Leftrightarrow (\overrightarrow{MK}+4\overrightarrow{KC})^2=(2\overrightarrow{MK}+2\overrightarrow{KC})^2\)

\(\Leftrightarrow MK^2+16KC^2=4MK^2+4KC^2\)

\(\Leftrightarrow 12KC^2=3MK^2\Leftrightarrow MK=2KC=\frac{2}{3}AC\)

Vậy $M$ thuộc đường tròn tâm $K$ bán kính $\frac{2}{3}AC$

 

Akai Haruma
14 tháng 8 2021 lúc 16:26

d.
Gọi $I$ là trung điểm $BC$

\(|\overrightarrow{MB}+\overrightarrow{MC}|=|\overrightarrow{MB}-\overrightarrow{MC}|\)

\(\Leftrightarrow |\overrightarrow{MI}+\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}|=|\overrightarrow{CB}|\)

\(\Leftrightarrow |2\overrightarrow{MI}|=|\overrightarrow{CB}|\Leftrightarrow |\overrightarrow{MI}|=\frac{|\overrightarrow{CB}|}{2}\)

Vậy điểm $M$ thuộc đường tròn tâm $I$ bán kính $\frac{BC}{2}$
 

Anh Khương Vũ Phương
Xem chi tiết
nguyễn viết hoàng
20 tháng 8 2018 lúc 18:31

trên AC lấy điểm I sao cho \(\overrightarrow{IA}=2\overrightarrow{IC}\)

KHI ĐÓ: \(|\overrightarrow{-MI}+\overrightarrow{MB}|=|\overrightarrow{MB}+\overrightarrow{MC}|\)

chọn điểm K trung điểm BC

\(|\overrightarrow{IB}|=|2\overrightarrow{MK}+\overrightarrow{KB}+\overrightarrow{KC}|\rightarrow IB=2MK\)

vậy M thuộc tập hợp đường tròn đường kình IB tâm K

Satoshi
7 tháng 11 2018 lúc 10:02

trên AC lấy điểm I sao cho −→IA=2−→ICIA→=2IC→

KHI ĐÓ: |−−−→−MI+−−→MB|=|−−→MB+−−→MC||−MI→+MB→|=|MB→+MC→|

chọn điểm K trung điểm BC

|−→IB|=|2−−−→MK+−−→KB+−−→KC|→IB=2MK|IB→|=|2MK→+KB→+KC→|→IB=2MK

vậy M thuộc tập hợp đường tròn đường kình IB tâm K

fan FA
Xem chi tiết
Cao Tường Vi
Xem chi tiết
Cao Tường Vi
6 tháng 2 2020 lúc 14:11

một đường tròn

Khách vãng lai đã xóa
Nguyễn Thảo Hân
Xem chi tiết
Trần Quốc Lộc
5 tháng 8 2019 lúc 10:38

\(\text{a) }\left|2\overrightarrow{MA}+3\overrightarrow{MB}\right|=\left|3\overrightarrow{MB}-2\overrightarrow{MC}\right|\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}\right)^2=\left(3\overrightarrow{MB}-2\overrightarrow{MC}\right)^2\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}\right)^2-\left(3\overrightarrow{MB}-2\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}-3\overrightarrow{MB}+2\overrightarrow{MC}\right)\left(2\overrightarrow{MA}+3\overrightarrow{MB}+3\overrightarrow{MB}-2\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MC}\right)\left[2\left(\overrightarrow{MA}-\overrightarrow{MC}\right)+6\overrightarrow{MB}\right]=0\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MC}\right)\left(\overrightarrow{CA}+3\overrightarrow{MB}\right)=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MC}=0\\\overrightarrow{CA}+3\overrightarrow{MB}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}=-\overrightarrow{MC}\\\overrightarrow{CA}=-3\overrightarrow{MB}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}M;A;C\text{ thẳng hàng };M\text{ nằm giữa }A;C\\MA=MC\end{matrix}\right.\\\left\{{}\begin{matrix}CA//MB\\CA=3MB\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}M\text{ là trung điểm }AC\\CA//MB;CA=3MB\end{matrix}\right.\)

Vậy......

Trần Quốc Lộc
5 tháng 8 2019 lúc 10:45

\(b\text{) }\left|4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2=\left(2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)^2\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2-\left(2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}-2\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MB}+2\overrightarrow{MC}\right)\cdot6\overrightarrow{MA}=0\\ \Rightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}=0\\\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}M\equiv A\\M\text{ là trọng tâm }\Delta ABC\end{matrix}\right.\)Vậy...........

Đào Thu Hiền
Xem chi tiết
tran duc huy
Xem chi tiết
Hồng Phúc
6 tháng 11 2020 lúc 11:24

d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)

Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)

\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)

\(\Rightarrow4MP=0\Rightarrow M\equiv P\)

Khách vãng lai đã xóa
Hồng Phúc
6 tháng 11 2020 lúc 11:10

Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC

a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)

\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC

b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)

\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)

\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)

Khách vãng lai đã xóa
Hồng Phúc
6 tháng 11 2020 lúc 11:19

c, Lấy điểm E thỏa mãn \(2\overrightarrow{EA}+\overrightarrow{EB}=\overrightarrow{0}\), F thỏa mãn \(4\overrightarrow{FB}-\overrightarrow{FC}=\overrightarrow{0}\)

Ta có \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|2\overrightarrow{ME}+2\overrightarrow{EA}+\overrightarrow{ME}+\overrightarrow{EB}\right|=\left|3\overrightarrow{ME}\right|=3ME\)

\(\left|4\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|4\overrightarrow{MF}+4\overrightarrow{FB}-\overrightarrow{MF}-\overrightarrow{FC}\right|=\left|3\overrightarrow{MF}\right|=3MF\)

\(\Rightarrow ME=MF\Rightarrow M\) thuộc đường trung trực EF

Khách vãng lai đã xóa
Mai Anh
Xem chi tiết