Cho ΔABC, trọng tâm G; N,M,P lần lượt là trung điểm của AC, BC, AB Phân tích:
a) \(\overrightarrow{AG}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) \(\overrightarrow{BG}\) theo \(\overrightarrow{AM}\) và \(\overrightarrow{AC}\)
cho ΔABC có trọng tâm G và đường trung tuyến AD. Kéo dài GD thêm 1 đoạn, DI=DG. Gọi E là trung điểm của AB. IE cắt BM tại G. Chứng minh M là trọng tâm của ΔABI. Cần gấp ạ
Cho ΔABC nhọn và H là trực tâm. Vẽ hình bình hành BHCD. Đường thẳng đi qua D và song song BC cắt AH tại E.
a/ Gọi O là tâm đường tròn ngoại tiếp ΔABC và M là trung điểm BC, đường thẳng AM cắt OH tại G. CMR: G là trọng tâm của ΔABC
b/ Giả sử OD=a. Hãy tính độ dài đường tròn ngoại tiếp BHC theo a
Cho ΔABC, trung tuyến AD. Gọi G là trọng tâm của ΔABC. Đường thẳng d qua G cắt các cạnh AB, AC lần lượt tại M, N.
C/m:
a) \(\dfrac{AB}{AM}\) + \(\dfrac{AC}{AN}\) = 3
b) \(\dfrac{BM}{AM}\) + \(\dfrac{CN}{AN}\) = 1
Bài 11: Cho ΔABC có A(2;-3) và B(3;-2) và \(S_{ABC}=\dfrac{3}{2}\)
Biết trọng tâm G của ΔABC thuộc đường thẳng 3x-y-8=0
Viết PTTQ của đường cao CH
\(\overrightarrow{AB}=\left(1;1\right)\Rightarrow AB=\sqrt{2}\)
\(\Rightarrow d\left(C;AB\right)=h_a=\dfrac{2S_{ABC}}{AB}=\dfrac{3\sqrt{2}}{2}\)
Gọi M là trung điểm AB, K là chân đường vuông góc hạ từ G xuống AB \(\Rightarrow GK||CH\) (cùng vuông góc AB)
Áp dụng định lý Talet: \(\dfrac{GK}{CH}=\dfrac{GM}{CM}=\dfrac{1}{3}\) (t/c trọng tâm)
\(\Rightarrow\dfrac{d\left(G;AB\right)}{d\left(C;AB\right)}=\dfrac{1}{3}\Rightarrow d\left(G;AB\right)=\dfrac{1}{3}d\left(C;AB\right)=\dfrac{\sqrt{2}}{2}\)
Do G thuộc \(3x-y-8=0\Rightarrow\) tọa độ G có dạng \(G\left(a;3a-8\right)\)
Phương trình AB: \(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)
\(d\left(G;AB\right)=\dfrac{\left|a-\left(3a-8\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left|2a-3\right|=1\Rightarrow\left[{}\begin{matrix}a=2\Rightarrow G\left(2;-2\right)\\a=1\Rightarrow G\left(1;-5\right)\end{matrix}\right.\)
Áp dụng công thức trọng tâm: \(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B\\y_C=3y_G-y_A-y_B\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}C\left(1;-1\right)\\C\left(-2;-10\right)\end{matrix}\right.\)
Đường cao CH đi qua C và vuông góc AB nên nhận \(\left(1;1\right)\) là vtpt
Có 2 đường thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y+1\right)=0\\1\left(x+2\right)+1\left(y+10\right)=0\end{matrix}\right.\) \(\Leftrightarrow...\)
Cho ΔABC. G là trọng tâm tam giác, d là một đường thẳng qua G cắt cạnh AB, AC theo thứ tự tại M và N.
Cho ΔABC có trọng tâm G. Tìm tập hợp M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{2MC}\right|=\left|\overrightarrow{AM}-\overrightarrow{AB}\right|\)
Cho ΔABC. Qua trọng tâm G, kẻ d cắt AB,AC theo thứ tự tại E,F . CMR BE/AE + CF/AF =1
Cho ΔABC, M&N lần lượt là t/đ của BC&AC. Gọi O,H,G lần luotj là tâm đường tròn ngoại tiếp Δ, trực tâm và trọng tâm trong ΔABC. CMR: 1/ MN//=1/2AB
2/ H,G,O thẳng hàng
3/ GH/GO = AH/OM = AG/GM = 2
Nếu đk vẽ hộ mk hình lun nha.
Cho ΔABC có trọng tâm G . Tìm tập hợp điểm M thõa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow MG=\dfrac{1}{3}BC\)
Tập hợp M là đường tròn tâm G bán kính \(R=\dfrac{BC}{3}\)
cho ΔABC cân tại A, có góc BAC nhọn, qua A vẽ tia phân giác BAC cắt BC tại D a, chứng minh Δ ABD= ΔACD b, Vẽ đường trung tuyến CF cuả ΔABC cắt AD tại G chứng minh G là trọng tâm của ΔABC c, Gọi H là trung điểm của DC . Qua H vẽ đường thẳng vuông góc với cạnh DC cắt AC tại E. chưng minh ΔDEC câb d, chứng minh ba điểm BGE thẳng hàng và AD > BD.