§1. Phương trình đường thẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lê Phước Thịnh

Bài 11: Cho ΔABC có A(2;-3) và B(3;-2) và \(S_{ABC}=\dfrac{3}{2}\)

Biết trọng tâm G của ΔABC thuộc đường thẳng 3x-y-8=0

Viết PTTQ của đường cao CH

Nguyễn Việt Lâm
19 tháng 3 2022 lúc 15:22

\(\overrightarrow{AB}=\left(1;1\right)\Rightarrow AB=\sqrt{2}\)

\(\Rightarrow d\left(C;AB\right)=h_a=\dfrac{2S_{ABC}}{AB}=\dfrac{3\sqrt{2}}{2}\)

Gọi M là trung điểm AB, K là chân đường vuông góc hạ từ G xuống AB \(\Rightarrow GK||CH\) (cùng vuông góc AB)

Áp dụng định lý Talet: \(\dfrac{GK}{CH}=\dfrac{GM}{CM}=\dfrac{1}{3}\) (t/c trọng tâm)

\(\Rightarrow\dfrac{d\left(G;AB\right)}{d\left(C;AB\right)}=\dfrac{1}{3}\Rightarrow d\left(G;AB\right)=\dfrac{1}{3}d\left(C;AB\right)=\dfrac{\sqrt{2}}{2}\)

Do G thuộc \(3x-y-8=0\Rightarrow\) tọa độ G có dạng \(G\left(a;3a-8\right)\)

Phương trình AB: \(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)

\(d\left(G;AB\right)=\dfrac{\left|a-\left(3a-8\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|2a-3\right|=1\Rightarrow\left[{}\begin{matrix}a=2\Rightarrow G\left(2;-2\right)\\a=1\Rightarrow G\left(1;-5\right)\end{matrix}\right.\)

Áp dụng công thức trọng tâm: \(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B\\y_C=3y_G-y_A-y_B\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}C\left(1;-1\right)\\C\left(-2;-10\right)\end{matrix}\right.\)

Đường cao CH đi qua C và vuông góc AB nên nhận \(\left(1;1\right)\) là vtpt

Có 2 đường thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y+1\right)=0\\1\left(x+2\right)+1\left(y+10\right)=0\end{matrix}\right.\) \(\Leftrightarrow...\)


Các câu hỏi tương tự
andiengn
Xem chi tiết
tranthuylinh
Xem chi tiết
Hán Bình Nguyên
Xem chi tiết
nắng Mộtmàu_
Xem chi tiết
trinh trần
Xem chi tiết
Lê Thị Thuỳ Dương
Xem chi tiết
Lê Ngọc Trâm
Xem chi tiết
Điệp Hoàng
Xem chi tiết
FREESHIP Asistant
Xem chi tiết