Chứng minh rằng \(A=n\left(n+1\right).\left(2n+1\right)⋮6\)với mọi n nguyên
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=\left(n+1\right)n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
vì tích của 3 số tự nhiên liên tiếp chia hết cho 6
Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi nguyên n.
Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1)
=> đpcm
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=>\left(n+1\right)\left(n^2+2n\right)\)
\(=>n\left(n+1\right)\left(n+2\right)\)
Ta thấy \(n;\left(n+1\right);\left(n+2\right)\)là 3 số tự nhiên liên tiếp
Mà tích của 3 số tn liên tiếp luôn chia hết cho 6
=> \(n^2\left(n+1\right)+2n\left(n+1\right)\)chia hết ch 6 ( đpcm )
Cấm ai chép ...............
Chứng minh rằng biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\)luôn chia hết cho 5 với mọi số nguyên n
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5
vay n(2n-3)-2n(n+1) chia het cho 5
Chứng minh rằng với mọi số nguyên dương n thì:
\(5n=1^2+2^2+3^2+...+n^2=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
(quy nạp)
\(1^2+2^2+3^2+.......+n^2=1\times\left(2-1\right)+2\times\left(3-1\right)+.......+n\left(\left(n+1\right)-1\right)\)=\(\left(1.2+2.3+3.4+......+n\left(n+1\right)\right)-\left(1+2+3+.....+n\right)\)=\(\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
sử dụng qui nạp:
1² + 2² + 3² + 4² + ...+ n² = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)
(*) đúng khi n= 1
giả sử (*) đúng với n= k, ta có:
1² + 2² + 3² + 4² + ...+ k² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)
ta cm (*) đúng với n = k +1, thật vậy từ (1) cho ta:
1² + 2² + 3² + 4² + ...+ k² + (k + 1)² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) + (k + 1)²
= (k+1)\(\left(\frac{k\left(2k+1\right)}{6}+\left(k+1\right)\right)\)= (k + 1)\(\frac{2k^2+k+6k+6}{6}\)
= (k + 1)\(\frac{2k^2+7k+6}{6}\) = (k + 1)\(\frac{2k^2+4k+3k+6}{6}\)
= (k + 1)\(\frac{2k\left(k+2\right)+3\left(k+2\right)}{6}\) = (k + 1)\(\frac{\left(k+2\right)\left(2k+3\right)}{6}\)
vậy (*) đúng với n = k + 1, theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*
Hồng Trinh đúng rồi nhưng mà dùng quy nạp cơ
Chứng minh rằng biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\) luôn chia hết cho 5 với mọi số nguyên n ?
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)
= \(-5n\)
Vì \(-5⋮5\) => -5n \(⋮\) 5
=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z
n(2n-3)-2n(n+1)=2n2-3n+2n2-2n=-5n \(⋮\) 5 với mọi n
Chứng minh rằng với mọi n thuộc Z thì :
a) \(\left(n^2+3n-1\right).\left(n+2\right)-n^3+2⋮5\)
b) \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)⋮2\)
c) \(\left(2n-1\right).3-\left(2n-1\right)⋮8\)
d) \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
Chứng minh rằng :
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
luôn chia hết cho 6 với mọi số nguyên n ?
Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)\left[n\left(n+2\right)\right]=n.\left(n+1\right).\left(n+2\right)\)
Vì tích 3 số nguyên liên tiếp luôn chia hết cho 6 nên đa thức trên luôn chia hết hco 6 với mọi số nguyên thuộc n
Theo đề bài ta có:
n2(n+1)+2n(n+1)= (n+1) (n2+2n)
= n(n+1) (n+2)
Vì ta nhận thấy n(n+1) là tích 2 số nguyên liên tiếp (1)
và n(n+1) (n+2) là tích 3 số nguyên liên tiếp (2)
Từ (1) và (2) suy ra:
n(n+1) (n+2) chia hết cho 6 với mọi số nguyên n
\(\text{Ta có : }n^2\left(n+1\right)+2n\left(n+1\right)\\ \left(n^2+2n\right)\left(n+1\right)\\ n\left(n+1\right)\left(n+2\right)\)
Do \(n\left(n+1\right)\left(n+2\right)\) là tích của 3 số tự nhiên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮2;3\left(1\right)\)
\(\text{Ta lại có: }2=1\cdot2\\ 3=1\cdot3\\ \Rightarrow\: ƯCLN_{\left(2;3\right)}=1\\ \Rightarrow2\text{ và }3\text{ là 2 số nguyên tố cùng nhau }\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(n\left(n+1\right)\left(n+2\right)⋮2\cdot3\\ \Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\left(đpcm\right)\)
Vậy \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
Chứng minh rằng biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\) luôn chia hết cho 5 với mọi số nguyên n.
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
\(-5n\)chia hết cho \(5\)với mọi số nguyên \(n\)vì \(-5\)chia hết cho \(5\)
Vậy : \(n\left(2n-3\right)-2n\left(n+1\right)\)chia hết cho \(5\)
Chứng minh rằng \(A=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)chia hết cho 3 với mọi n
\(A=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)
\(=3n-2n^2-3+2n-\left(n^2+5n\right)\)
\(=3n-2n^2-3+2n-n^2-5n\)
\(=\left(3n-5n+2n\right)-\left(2n^2-n^2\right)-3\)
\(=-3\)
\(\Rightarrowđpcm\)
\(A=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right) \)
\(=3n-2n^2-3+2n-\left(n^2+5n\right)\)
\(=3n-2n^2-3+2n-n^2-5n\)
\(=-3n^2-3\)
\(=3\left(-n^2-1\right)\)
Mà \(3\left(-n^2-1\right)⋮3\)
Vậy \(A⋮3\forall n\)