Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Phúc

Chứng minh rằng với mọi số nguyên dương n thì:

\(5n=1^2+2^2+3^2+...+n^2=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)

(quy nạp)

Hồng Trinh
19 tháng 5 2016 lúc 14:30

\(1^2+2^2+3^2+.......+n^2=1\times\left(2-1\right)+2\times\left(3-1\right)+.......+n\left(\left(n+1\right)-1\right)\)=\(\left(1.2+2.3+3.4+......+n\left(n+1\right)\right)-\left(1+2+3+.....+n\right)\)=\(\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Hồng Trinh
19 tháng 5 2016 lúc 14:51

sử dụng qui nạp: 
1² + 2² + 3² + 4² + ...+ n² = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*) 
(*) đúng khi n= 1 
giả sử (*) đúng với n= k, ta có: 
1² + 2² + 3² + 4² + ...+ k² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1) 
ta cm (*) đúng với n = k +1, thật vậy từ (1) cho ta: 
1² + 2² + 3² + 4² + ...+ k² + (k + 1)² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) + (k + 1)² 
= (k+1)\(\left(\frac{k\left(2k+1\right)}{6}+\left(k+1\right)\right)\)= (k + 1)\(\frac{2k^2+k+6k+6}{6}\)
= (k + 1)\(\frac{2k^2+7k+6}{6}\) = (k + 1)\(\frac{2k^2+4k+3k+6}{6}\)
= (k + 1)\(\frac{2k\left(k+2\right)+3\left(k+2\right)}{6}\) = (k + 1)\(\frac{\left(k+2\right)\left(2k+3\right)}{6}\)
vậy (*) đúng với n = k + 1, theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*

Hoàng Phúc
19 tháng 5 2016 lúc 14:36

Hồng Trinh đúng rồi nhưng mà dùng quy nạp cơ


Các câu hỏi tương tự
Lê Hiển Vinh
Xem chi tiết
Hoàng Hải Ngọc
Xem chi tiết
Đặng Thị Thùy Linh
Xem chi tiết
Nguyễn T.Kiều Linh
Xem chi tiết
Cậu Bé Ngu Ngơ
Xem chi tiết
Unname Bob
Xem chi tiết
TfBoyS_TDT
Xem chi tiết
đỗ thị kiều trinh
Xem chi tiết
Phạm Nguyễn Tất Đạt
Xem chi tiết