bt tan=5/12 . tính sin và cos
bài 1: a)biết sin α=√3/2.tính cos α,tan α,cot α
b)cho tan α=2.tính sin α,cos α,cot α
c)biết sin α=5/13.tính cos,tan,cot α
bài 2
biết sin α x cos α=12/25.tính sin,cos α
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
\(A=\dfrac{\sin+4\cos}{2\sin-cos}\)
bt rằng \(\tan=3,Tính:\)
Ta có:
\(1+tan^2x=\dfrac{1}{cos^2x}\)
\(\Leftrightarrow cos^2x=\dfrac{1}{1+tan^2x}\)
\(\Leftrightarrow cos^2x=\dfrac{1}{1+3^2}\)
\(\Leftrightarrow cosx=\sqrt{\dfrac{1}{10}}=\dfrac{\sqrt{10}}{10}\)
Mà: \(tanx=\dfrac{sinx}{cosx}\)
\(\Leftrightarrow sinx=tanx\cdot cosx\)
\(\Leftrightarrow sinx=3\cdot\dfrac{\sqrt{10}}{10}=\dfrac{3\sqrt{10}}{10}\)
Giá trị của A là:
\(A=\dfrac{\dfrac{3\sqrt{10}}{10}+4\cdot\dfrac{\sqrt{10}}{10}}{2\cdot\dfrac{3\sqrt{10}}{10}-\dfrac{\sqrt{10}}{10}}\)
\(A=\dfrac{\dfrac{3\sqrt{10}}{10}+\dfrac{4\sqrt{10}}{10}}{\dfrac{6\sqrt{10}}{10}-\dfrac{\sqrt{10}}{10}}\)
\(A=\dfrac{\dfrac{7\sqrt{10}}{10}}{\dfrac{5\sqrt{10}}{10}}\)
\(A=\dfrac{7}{5}\)
tan=3
=>sin=3*cos
\(A=\dfrac{sin+4cos}{2sin-cos}=\dfrac{3cos+4cos}{6cos-cos}=\dfrac{7}{5}\)
1.tính cos a, tan a, cot a nếu biết a nhọn và sin a =3/5
2. tính sin x, cos x nếu biết x nhọn và tan x=12/35
3. cho góc a nhọn và cos a =5/13.tính sin a, tan a và cot a
giúp mình với gấp lắm rồi mình sẽ tick cho bạn nào giải được. cảm ơn trước nhé
a, bt sin α=3/5, tính A= 5 \(sin^2\)α + 6\(cos^2\)α.
b,bt cos α= 4/5, tính B= 4\(sin^2\)α - 5\(cos^2\)α.
a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)
Ta có: \(A=5\cdot\sin^2\alpha+6\cdot\cos^2\alpha\)
\(=5\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha\)
\(=5+\dfrac{16}{25}=\dfrac{141}{25}\)
A =(cos a - sin a): (Cos a × sin a) Cho bt tan a = √3
Tính cos²25° - cos²12° - cos²78° + sin30° + cos²65° + 7cot45° Cho tana = 3. Tính sin, cos, tan
Bài 2:
Ta có: \(\cot\alpha=\dfrac{1}{\tan\alpha}\)
nên \(\cot\alpha=\dfrac{1}{3}\)
biết tan a=5/12. Tính cot a, sin a, cos a
a) Tính \(sin2a\) biết tan a\(=\dfrac{1}{15}\)
b) Cho \(3sina+4cosa=5\). Tính cos a và sin a
c) Tính \(sin^22a\) biết \(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
a.
\(tana=\dfrac{sina}{cosa}=\dfrac{1}{15}\Rightarrow sina=\dfrac{cosa}{15}\)
\(\Rightarrow sin2a=2sina.cosa=\dfrac{2cosa}{15}.cosa=\dfrac{2}{15}cos^2a=\dfrac{2}{15}.\dfrac{1}{1+tan^2a}=\dfrac{2}{15}.\dfrac{1}{1+\dfrac{1}{15^2}}=\dfrac{15}{113}\)
b.
\(5^2=\left(3sina+4cosa\right)^2\le\left(3^2+4^2\right)\left(sin^2+cos^2a\right)=25\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{sina}{3}=\dfrac{cosa}{4}\\3sina+4cosa=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}sina=\dfrac{3}{5}\\cosa=\dfrac{4}{5}\end{matrix}\right.\)
c.
\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+\dfrac{sin^2a}{cos^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
\(\)\(\Leftrightarrow\dfrac{sin^4a+cos^4a}{sin^2a.cos^2a}+\dfrac{sin^2a+cos^2a}{sin^2a.cos^2a}=7\)
\(\Leftrightarrow\dfrac{\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a}{sin^2a.cos^2a}+\dfrac{1}{sin^2a.cos^2a}=7\)
\(\Leftrightarrow\dfrac{2}{sin^2a.cos^2a}=9\)
\(\Leftrightarrow\dfrac{8}{\left(2sina.cosa\right)^2}=9\)
\(\Leftrightarrow\dfrac{8}{sin^22a}=9\)
\(\Leftrightarrow sin^22a=\dfrac{8}{9}\)
Cho sin α + cos α=√2
a, Tính cos α, sin α, tan α, cot α
b, Tính F = \(sin^5\alpha+cos^5\alpha\)