Tìm GTLN của biểu thức
c)C = (2-x)(x+4)
d)\(\dfrac{7}{x^2-24x+215y}\)
Cho biểu thức A =
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Tìm GTLN của biểu thức C=\(\dfrac{5-x^2}{x^2+3}\)
Ta có : \(C=\dfrac{5-x^2}{x^2+3}\)
\(=\dfrac{-\left(x^2+3\right)+8}{x^2+3}=\dfrac{8}{x^2+3}-1\)
Ta sẽ có : \(x^2\ge0\Rightarrow x^2+3\ge3\Rightarrow\dfrac{8}{x^2+3}\le\dfrac{8}{3}\)
\(\Rightarrow C=\dfrac{8}{x^2+3}-1\le\dfrac{8}{3}-1=\dfrac{5}{3}\)
Vậy : \(MaxC=\dfrac{5}{3}\Leftrightarrow x=0.\)
Để C lớn nhất thì x² + 3 nhỏ nhất
Ta có:
x² ≥ 0 với mọi x R
⇒ x² + 3 ≥ 3 với mọi x R
⇒ x² + 3 nhỏ nhất là 3 khi x = 0
⇒ max C = (5 - 0²)/(0² + 3) = 5/3
tìm GTLN của biểu thức
a) \(A=-2x^2+4x+7\)
b) \(B=45-4x-3x^2\)
c) \(C=12x-2x^2+7\)
d) \(D=24x+2019-x^2\)
A= 9- 2.(x^2-2x+ 1)= 9- 2.(x-1)2
Lại có (x-1)2 \(\ge\)0 => A\(\le\)9
Vậy max A =9 <=> x-1=0 => x=1
b, B= 139/3-((x.√3)2+2.√3.2/(√3)+4/3)
= 139/3-(√3.x+2/√3)2
Lại có (√3.x+2/√3)2\(\ge\)0 => B\(\le\)139/3
Vậy maxB = 139/3 <=> x = -2/3
c,C= 25-2(x^2-2.x.3+9)= 25- 2(x-3)2
Laạạiại ccó (x-3)2\(\ge\)0
=> C\(\le\)25
Để max C = 25 <=> x-3= 0 <=> x=3
d, D=2163-( x^2-2.x.12+144)= 2163-(x-12)2
Lại có (x-12)2\(\ge\)0
=> D\(\le\)2163
Để max D = 2163 <=> x-12 = 0 <=> x= 12
Bài 4: Cho biểu thức A \(=\left(\dfrac{1}{x+2}-\dfrac{2}{x-2}-\dfrac{x}{4-x^2}\right):\dfrac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
a) Rút gọn A
b)Tìm x để A > 0
c) Tìm x biết x2 + 3x + 2 \(=0\)
d) Tìm x để A đạt GTLN, tìm GTLN đó
a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)
b: A>0
=>x+1>0
=>x>-1
c: x^2+3x+2=0
=>(x+1)(x+2)=0
=>x=-2(loại) hoặc x=-1(loại)
Do đó: Khi x^2+3x+2=0 thì A ko có giá trị
B1:Cho biểu thức \(A=\left(\dfrac{1}{x+2}-\dfrac{2}{x-2}-\dfrac{x}{4-x}\right):\dfrac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
a. Rút gọn biểu thức A
b. Tìm x để A > 0
c. Tìm x biết \(x^2+3x+2=0\)
d. Tìm x để A đạt GTLN, tìm GTLN đó.
Cho biểu thức\(A=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}-\dfrac{4x^2}{x^2-4}\right):\dfrac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
a. Rút gọn A
b. Tính giá trị của A biết \(\left|x-5\right|=2\)
c. Tìm giá trị nguyên dương của x để A < 4 và A có giá trị là một số nguyên.
B1: ĐXXĐ: \(x\ne\pm2;x\ne-1\)
\(=\left(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\left(\dfrac{x-2-2x-2+x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}:\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}.\dfrac{\left(x-2\right)\left(x+1\right)}{-6\left(x+2\right)}=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}\)
b, \(A=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}>0\)
\(\Leftrightarrow2x+2>0\) (vì \(3\left(x+2\right)^2\ge0\forall x\))
\(\Leftrightarrow x>-1\).
-Vậy \(x\in\left\{x\in Rlx>-1;x\ne2\right\}\) thì \(A>0\).
Viết các biểu thức sau thành bình phương của một tổng hoặc một hiệu:
a) \({x^2} + 2x + 1\) b) \(9 - 24x + 16{x^2}\) c) \(4{x^2} + \dfrac{1}{4} + 2x\)
a) \(x^2+2x+1\)
\(=\left(x+1\right)^2\)
b) \(9-24x+16x^2\)
\(=\left(3-4x\right)^2\)
c) \(4x^2+\dfrac{1}{4}+2x\)
\(=4x^2+2x+\dfrac{1}{4}\)
\(=\left(2x+\dfrac{1}{2}\right)^2\)
Cho biểu thức: A=\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của biểu thức A khi x = -2 và x = 4.
c) Tìm x biết A = 3.
d) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên.
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>