CM bất đẳng thức \(\dfrac{x^2+5}{\sqrt{x^2+4}}>2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh bất đẳng thức:\(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}\le\sqrt{x+9}\) với x là số thực không âm. Dấu đẳng thức xảy ra khi nào?
1) Chứng minh đẳng thức $\left(1-\dfrac{5+\sqrt{2}}{\sqrt{2}+1}\right) \cdot \sqrt{3+2 \sqrt{2}}=-4$.
2) Rút gọn biểu thức $A=\left(\dfrac{\sqrt{x}}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right): \dfrac{2}{x+\sqrt{x}-2}$ với $x>0 ; x \neq 1$.
1, vt : \(\left(1-\dfrac{5+\sqrt{2}}{\sqrt{2}+1}\right).\sqrt{3+2\sqrt{2}}\)
=\(\dfrac{\sqrt{2}+1-5-\sqrt{2}}{\sqrt{2}+1}.\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}\)
=\(\dfrac{-4}{\sqrt{2}+1}.\sqrt{\left(\sqrt{2}+1\right)^2}\)
=\(\dfrac{-4\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
=-4
2, A=\(\left(\dfrac{\sqrt{x}}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right)\div\dfrac{2}{x+\sqrt{x}-2}\)
=\(\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2}\)
=\(\left(\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)
=\(\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2}\)
=\(\dfrac{-\sqrt{x}-2}{\sqrt{x}+1}\)
1. (1−5+√2√2+1)⋅√3+2√2=−4√2+1√(√2+1)2=−4(1−5+22+1)⋅3+22=−42+1(2+1)2=−4.
2. Với x>0;x≠1x>0;x≠1 ta có:
A=(√xx+√x−1√x−1):2x+√x−2A=(xx+x−1x−1):2x+x−2
⇔A=(√x√x(√x+1)−1√x−1):2(√x−1)(√x+2)⇔A=(xx(x+1)−1x−1):2(x−1)(x+2)
⇔A=−2(√x−1)(√x+1)⋅(√x−1)(√x+2)2⇔A=−2(x−1)(x+1)⋅(x−1)(x+2)2
⇔A=−(√x+2)√x+1⇔A=−(x+2)x+1. Vạyy với x>0;x≠1x>0;x≠1, ta có A=−(√x+2)√x+1A=−(x+2)x+1.
* Chứng minh đẳng thức
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-1}\) với x ≥ 2
* Trục căn thức ở mẫu
a.\(\dfrac{1}{\sqrt{5}+\sqrt{7}}\)
b.\(\dfrac{2}{5-\sqrt{2}-\sqrt{3}}\)
c.\(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}\)
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
\(=\sqrt{x-1-2\sqrt{x-1+1}}+\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)
\(=\sqrt{x-1}-1+\sqrt{x-1}+1\left(x\ge2\right)=2\sqrt{x-1}\)
a) \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)
c) \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}=\dfrac{7}{2\sqrt{5}-\sqrt{3}}=\dfrac{7\left(2\sqrt{5}+\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}\)
\(=\dfrac{14\sqrt{5}+7\sqrt{3}}{17}\)
Giúp mình với mình đang cần gấp !
CM bất đẳng thức sau : \(2\sqrt{n+1}-2\sqrt{n}< \dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\sqrt{n-1}\)
\(\sqrt{n+1}-\sqrt{n}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}< \dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\\ \Leftrightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}\left(1\right)\\ \sqrt{n}-\sqrt{n-1}=\dfrac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\sqrt{n}+\sqrt{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}>\dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\\ \Leftrightarrow2\left(\sqrt{n}-\sqrt{n-1}\right)>\dfrac{1}{\sqrt{n}}\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐfcm\)
Chứng minh bất đẳng thức
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
Điều kiện là \(xy\ne0\)
BĐT tương đương:
\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(x^2+y^2-xy\right)\left(x-y\right)^2}{x^2y^2}\ge0\) (luôn đúng)
a/ CM:\(\sqrt{x^4+1}\)≥\(\dfrac{1}{\sqrt{17}}\left(x^2+4\right)\) với mọi số thực x.Dấu đẳng thức xảy ra khi nào?
b/ Cho a,b là các số thực thỏa mãn \(a^2+b^2\) ≥\(\dfrac{1}{2}\) .Tính giá trị nhỏ nhất của biểu thức D=\(\sqrt{a^2+1}+\sqrt{b^2+1}\)
CM bất đẳng thức sau:
\(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
Lời giải:
Áp dụng BĐT Cô-si ta có:
\(a^2+3=(a^2+2)+1\geq 2\sqrt{(a^2+2).1}=2\sqrt{a^2+2}\)
\(\Rightarrow \frac{a^2+3}{\sqrt{a^2+2}}\geq \frac{2\sqrt{a^2+2}}{\sqrt{a^2+2}}=2\)
Dấu "=" xảy ra khi \(a^2+2=1\Leftrightarrow a^2=-1\) (vô lý)
Vậy nghĩa là dấu "=" không xảy ra, hay \(\frac{a^2+3}{\sqrt{a^2+2}}>2\) (đpcm)
Giải phương trình bằng phương pháp bất đẳng thức
1, \(\sqrt{x^2-6x+11}+\sqrt{x^2-6x+13}+\sqrt[4]{x^2-4x+5}=3+\sqrt{2}\)
2, \(\sqrt{x-10}+\sqrt{30-x}=x^2-40x+400+2\sqrt{10}\)
3, \(x^2-3x+3,5=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
4, \(\sqrt{5x^3+3x^2+3x-2}=\dfrac{x^2}{2}+3x-\dfrac{1}{2}\)
5, \(2\sqrt{7x^3-11x^2+25x-12}=x^2+6x-1\)
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
1) Trong các đẳng thức sau, đẳng thức nào đúng
a) \(x\sqrt{2}=\sqrt{2x}\)
b) \(x\sqrt{2}=\sqrt{2x^2}\) với x2 > 0
c) \(x\sqrt{\dfrac{2}{x}}=\sqrt{2x^2}\)
d) \(x\sqrt{\dfrac{2}{x}}=-\sqrt{2x}\)
2) Với x > y > 0 thì biểu thức \(\dfrac{1}{y-x}\sqrt{2x^2.\left(x-y\right)^2}\) được rút gọn là
1. không đáp án đúng
2.\(\dfrac{1}{y-x}\sqrt{2x^2\left(x-y\right)^2}=\dfrac{-1}{x-y}x\left(x-y\right)\sqrt{2}\left(vì>y>0\right)=-x\sqrt{2}\)