Bài tập: Rút gọn biểu thức.
\(3\sqrt{x-1}+2\sqrt{4x-4}-3\sqrt{9x-9}+6=0\)
rút gọn biểu thức sau
g,\(x-2-\sqrt{4-4x+x^2}\) với x ≥ 2
h,\(x-2-\sqrt{4-4x+x^2}\) với x ≤ 2
i,\(3-x+\sqrt{9+9x+x^2}\) với x ≤ - 3
h) \(x-2-\sqrt{4-4x+x^2}\)
\(=x-2-\sqrt{\left(2-x\right)^2}\)
\(=x-2-\left|2-x\right|\)
\(=x-2-2+x\)
\(=2x-4\)
g) \(x-2-\sqrt{4-4x+x^2}\)
\(=x-2-\sqrt{\left(2-x\right)^2}\)
\(=x-2-\left|2-x\right|\)
\(=x-2-\left[-\left(2-x\right)\right]\)
\(=x-2+2-x\)
\(=0\)
i) \(3-x+\sqrt{9+6x+x^2}\)
\(=3-x+\sqrt{\left(3+x\right)^2}\)
\(=3-x+\left|3+x\right|\)
\(=3-x-3-x\)
\(=-2x\)
1.Thực hiện phép tính:
2.Tìm x biết:
\(2\sqrt{36x-36}-\dfrac{1}{3}\sqrt{9x-9}-4\sqrt{4x-4}+\sqrt{x-1}=16\)
3. Cho biểu thức: ( với x0; x1)
a) Rút gọn biểu thức P
b) Xác định x để
4.
Cho tam giác ABC vuông tại A, đường cao AH=6cm, HC= 8cm.
a)Tính độ dài HB,BC, AB, AC
b)Kẻ . Tính độ dài HD và diện tích tam giác AHD
5. Giải tam giác vuông ABC vuông tại A, biết AC = 8cm, và
\(=2\sqrt{3}-4\sqrt{3}+5\sqrt{3}=3\sqrt{3}\)
Bài 5:
\(\widehat{B}=60^0\)
\(AB=8\sqrt{3}\left(cm\right)\)
\(BC=16\sqrt{3}\left(cm\right)\)
Cho biểu thức A=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)và B= \(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}-\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\) 9x>/ 0 , x khác 4 , x khác 9 )
a) Rút gọn A và tính A khi x = 1
b) Rút gọn B
bài 1: rút gọn bthuc
a.\(\dfrac{a+\sqrt{a}}{\sqrt{a}}\) b.\(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}\)
b2: rút gọn
a.\(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}\) b.4-x-\(\sqrt{4-4x+x^2}\) c.\(\sqrt{4x^2-4x\text{x^2 +2*x-3 >0}}-\sqrt{4x^2+4x+1}\)
Bài 1:
a) \(\dfrac{a+\sqrt{a}}{\sqrt{a}}=\sqrt{a}+1\)
b) \(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}=\dfrac{\left|x-3\right|}{3-x}=\pm1\)
Bài 2:
a) \(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}=\pm\dfrac{1}{3x+1}\)
b) \(4-x-\sqrt{x^2-4x+4}=4-x-\left|x-2\right|=\left[{}\begin{matrix}6-2x\left(x\ge2\right)\\2\left(x< 2\right)\end{matrix}\right.\)
Rút gọn các biểu thức sau:
a) $\sqrt{9a^4}$
b) 2$\sqrt{a^{2}}$- 5a (với a<0)
c) $\sqrt{16(1+4x+4x^2)}$ với x $\geq$ $\frac{1}{2}$
d) $\frac{1}{a-3}$$\sqrt{9(a^2-3a+9)}$ với a<3
a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)
b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)
c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)
Cho biểu thức B= \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\) với \(x\ge-1\).
a) Rút gọn biểu thức B.
b) tìm x sao cho B có giá trị là 16.
a.
\(B=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\left(x\ge-1\right)\)
\(B=\sqrt{16}.\sqrt{x+1}-\sqrt{9}.\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}+\sqrt{x+1}\)
\(B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(B=\left(4-3+2+1\right).\sqrt{x+1}\)
\(B=4.\sqrt{x+1}\)
b.
\(B=16\\\)
\(\Rightarrow4\sqrt{x+1}=16\)
\(\Rightarrow\sqrt{x+1}=\dfrac{16}{4}=4\)
\(\Rightarrow x+1=4^2\)
\(\Rightarrow x+1=16\rightarrow x=16-1=15\) (thỏa mãn)
vậy x=15
Rút gọn biểu thức
1) x + 3 + \(\sqrt{x^2-6x+9}\) (x \(\le\) 3)
2) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\) (-2 \(\le\) x \(\le\) 0)
3) \(\sqrt{x^{2^{ }}+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
4) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\) (x > 1)
5) |x - 2| + \(\dfrac{\sqrt{x^2-4x+4}}{x-2}\) (x < 2)
6) 2x - 1 - \(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
1.
$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$
$=x+3+(3-x)=6$
2.
$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$
$=|x+2|-|x|=x+2-(-x)=2x+2$
3.
$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$
$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$
$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$
$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$
4.
$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$
$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$
5.
$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$
6.
$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$
$=2x-1-\frac{|x-5|}{x-5}$
Rút gọn các biểu thức sau:
a) \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\), \(x\ge0\)
b) \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\sqrt{\dfrac{9x^3}{64}}\), \(x>0\)
c) \(C=\dfrac{y}{2}+\dfrac{3}{4}\sqrt{1+9y^2-6y}-\dfrac{3}{2}\), \(y\le\dfrac{1}{3}\)
a) Ta có: \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+30\)
\(=14\sqrt{2x}+30\)
b) Ta có: \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\cdot\sqrt{\dfrac{9x^3}{64}}\)
\(=4\cdot\dfrac{5\sqrt{x}}{2}-\dfrac{8}{3}\cdot\dfrac{3\sqrt{x}}{2}-\dfrac{4}{3x}\cdot\dfrac{3x\sqrt{x}}{8}\)
\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{11}{2}\sqrt{x}\)
c) Ta có: \(\dfrac{y}{2}+\dfrac{3}{4}\sqrt{9y^2-6y+1}-\dfrac{3}{2}\)
\(=\dfrac{1}{2}y+\dfrac{3}{4}\left(1-3y\right)-\dfrac{3}{2}\)
\(=\dfrac{1}{2}y+\dfrac{3}{4}-\dfrac{9}{4}y-\dfrac{3}{2}\)
\(=-\dfrac{7}{4}y-\dfrac{3}{4}\)
Cho biểu thức: \(A=\dfrac{\sqrt{x}-1}{2\sqrt{x}+1}-\dfrac{3}{1-2\sqrt{x}}-\dfrac{4\sqrt{x}+4}{4x-1}\) và \(B=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)với x > 0 , x = 1/4
a. TÍnh giá trị của biểu thức B biết \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
b. Rút gọn biểu thức A
a: Ta có: \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
\(=4-2\sqrt{3}+2\sqrt{3}\)
=4
Thay x=4 vào B, ta được:
\(B=\dfrac{2-4}{2}=-1\)