Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Bích
Xem chi tiết
Lấp La Lấp Lánh
3 tháng 9 2021 lúc 10:46

a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)

               \(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)

b)Ta có:  \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)

               \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)

Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)

 

 

ý phan
Xem chi tiết
Akai Haruma
9 tháng 12 2021 lúc 9:27

Bạn tham khảo bài này:
https://hoc24.vn/cau-hoi/cho-biet-y-ti-le-thuan-voi-x1-x2-la-cac-gia-tri-cua-x-y1y2-la-cac-gia-tri-tuong-uong-cua-y-a-biet-xy-ti-le-thuan-va-x1-2-x2-3-y1-12-tim-y2-b-biet-xy-ti-le-nghich-v.3536605510330

Bùi Tiến Hùng
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2023 lúc 23:41

\(P=\dfrac{x^3+y^3}{x^3y^3}=\dfrac{\left(x+y\right)\left(x^2+y^2-xy\right)}{x^3y^3}=\dfrac{x^2y^2\left(x+y\right)}{x^3y^3}=\dfrac{x+y}{xy}=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{x^2+y^2-xy}=\dfrac{4\left(x^2+y^2-xy\right)-3\left(x^2+y^2-2xy\right)}{x^2+y^2-xy}\)

\(=4-\dfrac{3\left(x-y\right)^2}{x^2+y^2-xy}\le4\)

\(P_{max}=4\) khi \(x=y=\dfrac{1}{2}\)

 

Myrie thieu nang :)
Xem chi tiết
ミ★ΉảI ĐăПG 7.12★彡
21 tháng 12 2020 lúc 10:29

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

Linh Vũ khánh
9 tháng 12 2021 lúc 21:28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Nguyễn Minh An
Xem chi tiết
ILoveMath
20 tháng 8 2021 lúc 8:20

1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)

\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)

\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)

Lê Trần Nam Khánh
Xem chi tiết
Akai Haruma
16 tháng 9 2023 lúc 23:31

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

$A\geq \frac{9}{x+2+y+2+z+2}=\frac{9}{x+y+z+6}$

Áp dụng BĐT Bunhiacopxky:

$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$

$\Rightarrow 9\geq (x+y+z)^2\Rightarrow x+y+z\leq 3$

$\Rightarrow A\geq \frac{9}{x+y+z+6}\geq \frac{9}{3+6}=1$
Vậy $A_{\min}=1$. Dấu "=" xảy ra khi $x=y=z=1$

Nezuko Kamado
Xem chi tiết
Nezuko Kamado
31 tháng 10 2021 lúc 7:37

Mn ơi giúp mk với , please !!!

hưng phúc
31 tháng 10 2021 lúc 7:48

1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)

=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)

2. Ta có:

\(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)

\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)

=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)

=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)

Thái Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 14:05

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(=x^3-y^3+2y^3=x^3+y^3\)

Khi x=2/3 và y=1/3 thì \(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

HT.Phong (9A5)
29 tháng 10 2023 lúc 14:06

Ta có:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\) 

Thay x = \(\dfrac{2}{3}\) và \(y=\dfrac{1}{3}\) vào A ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

Cà Ngọc Thu
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 13:08

a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)

\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)

\(=\dfrac{2}{27}\)

c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0