Cho hàm số y=-\(x^3\)+3m\(x^2\)-3m-1.Tìm m để đồ thị hàm số có CĐ,CT đồng thời 2 điểm này đối xứng qua đt d:\(x\)+8\(y\)-74=0
Cho hàm số y= -x3+3mx2-3m-1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d: x+8y-74=0.
A. m=1
B. m=- 2
C. m= -1
D. m=1
Ta có
Để đồ thị hàm số có hai điểm cực trị khi m khác 0.
Khi đó gọi A( 0 ; -3m-1) và B( 2m ; 4m3-3m-1) là hai điểm cực trị của đồ thị hàm số.
Suy ra trung điểm của AB là điểm I ( m ; 2m3-3m-1) và A B → = ( 2 m ; 4 m 3 ) = 2 m ( 1 ; 2 m 2 )
Đường thẳng d có một vectơ chỉ phương là u → = ( 8 ; - 1 ) .
Ycbt
Chọn D.
Đồ thị hàm số y = - x 3 + 3 m x 2 - 3 m - 1 có cực đại và cực tiểu đối xứng nhau qua đường thẳng d: x+8y-74=0 khi m bằng:
A. 1
B. -2
C. -1
D. 2
Đồ thị hàm số y = - x 3 + 3 m x 2 - 3 m - 1 có cực đại và cực tiểu đối xứng nhau qua đường thẳng d : x + 8 y - 74 = 0 khi m bằng.
A.1
B.-2
C.-1
D.2
Cho hàm số y = (m -3)x + 3m + 7 (d) (m ≠3). Tìm m để:
1) Hàm số đồng biến?
2) Hàm số trên đi qua gốc tọa độ
3) Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -2
4) Đồ thị hàm số cắt trục hoành tại điểm của hoành độ bằng 1
5) Đồ thị hàm số đi qua điểm A (-1; -2)
6) Đồ thị của hàm số đã cho với đồ thị của các hàm số y= -x + 5 và y = 2x-1 đồng quy
7) Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) lớn nhất
1: Để hàm số đồng biến thì m-3>0
hay m>3
2: Thay x=0 và y=0 vào (d), ta được:
3m+7=0
hay \(m=-\dfrac{7}{3}\)
giúp mình bài này với :
Bài 4 : Cho hai điểm A(1 ; 1), B(2 ; -1).
Tìm các giá trị của m để đường thẳng y = (m2 – 3m)x + m2 – 2m + 2 song song với đường thẳng AB đồng thời đi qua điểm C(0 ; 2).
Bài 5: Cho hàm số y = (2m – 1)x + m – 3.
a) Tìm m để đồ thị của hàm số đi qua điểm (2; 5)
b) Chứng minh rằng đồ thị của hàm số luôn đi qua một điểm cố định với mọi m. Tìm điểm cố định ấy.
c) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ x =\(\sqrt{2}-1\)
Câu 2: Cho hàm số y = ( 3m-1)x + m +2 . Tìm tham số m để đồ thị hàm số cắt trục tung tại điểm có tung độ là −3.
Câu 3: Cho hàm số y = 2mx-3m+2 . Tìm tham số m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 2
Câu 2:
Thay x=0 và y=-3 vào (d), ta được:
m+2=-3
hay m=-5
Tìm tập hợp các gtri của m để đt y=-1 cắt đồ thị hàm số : \(y=x^4-\left(3m+2\right)x^2+3m\) tại 4 điểm pb có hoành độ nhỏ hơn 2
phương trình hoành độ giao điểm của f(x) với y = -1 là
x4 - (3m + 2)x2 + 3m = -1
⇔ x4 - (3m + 2)x2 + 3m + 1 = 0 (1)
Đặt x2 = t (ĐK : t ≥ 0)
Phương trình trở thành
t2 - (3m + 2)t + 3m + 1 = 0 (2)
Để (1) có 4 nghiệm phân biệt nhỏ hơn 2 thì (2) có 2 nghiệm phân biệt thỏa mãn 0 < t < 4
⇒ \(\left\{{}\begin{matrix}9-9m< 0\\3m+1>0\end{matrix}\right.\) (cái này bạn vẽ bảng biến thiên ra là xong)
⇒ \(\dfrac{-1}{3}< m< 1\)
Vậy tập hợp giá trị m cần tìm là \(\left(\dfrac{-1}{3};1\right)\)
Cho hàm số y = ( 2 – 3 m ) x – 6 . Tìm m để đồ thị hàm số đi qua điểm A (−3; 6)
A. m = 3
B. m = 4
C. m = 9
D. m = 2
Thay x = − 3 ; y = 6 v à o y = ( 2 – 3 m ) x – 6 t a đ ư ợ c 6 = ( 2 – 3 m ) . ( − 3 ) – 6
9 m = 18 ⇔ m = 2
Đáp án cần chọn là: D
Bài 9. Cho hàm số y = (2m- 3) x -1 (1). Tìm m để: a)Hàm số (1) là hàm số bậc nhất b)Hàm số (1) là hàm số bậc nhất đồng biến, nghịch biến c)Hàm số (1) đi qua điểm (-2; -3) d)Đồ thị của (1) là 1 đường thẳng // với đt y = (-m+ 2) x + 2m e)Đồ thị của (1) đồng quy với 2 đt y = 2x - 4 và y = x +1 f)Khoảng cách từ gốc tọa độ đến đường thẳng (1) bằng 1 5
a: Để hàm số là hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
b: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
Để hàm số nghịch biến thì 2m-3<0
hay m<3/2