Chứng tỏ rằng : B = ( 52008 + 52007 + 52006 ) chia hết cho 31
Thực hiện phép tính:
a, A = 3 2 . 5 2 . 4 3 : 2 3 . 3 2 . 2005 0
b, B = 194.12+6.437.2+3.369.4
c, C = 5 16 + 16 5 3 17 - 3 10 2 4 - 4 2
d, D = 5 2007 - 5 2006 : 5 2005 . 5
a, A = 3 2 . 5 2 . 4 3 : 2 3 . 3 2 . 2005 0
= 3 2 . 5 2 . 2 6 : 2 3 . 3 2 . 1
= 3 . 5 2 . 2 3 = 3.25.8 = 600
b, B = 194.12+6.437.2+3.369.4
= 194.12+437.12+369.12
= 12.(194+437+369)
= 12.1000 = 12000
c, C = 5 16 + 16 5 3 17 - 3 10 2 4 - 4 2
= 5 16 + 16 5 3 17 - 3 10 4 2 - 4 2
= 5 16 + 16 5 3 17 - 3 10 . 0 = 0
d, D = 5 2007 - 5 2006 : 5 2005 . 5
= 5 2007 - 5 2006 : 5 2006
= 5 2006 . 5 - 1 : 5 2006 = 4
cho x,y thuộc Z. Chứng tỏ rằng:
a, Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31
b, Nếu x + 7y chia hết cho 31 thì 6x + 11y chia hết cho 31
có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y
6x + 11y chia hết cho 31; 31y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31
làm ngược lại
Gọi A = 6x + 7y − 6x + 11y
⇒A = 6x + 42y − 6x − 11y
=> A = y(42 − 11)= 31y
Vì 31y chia hết cho 31 và 6x + 11y chia hết cho 31
Nên 6 (x+7y) chia hết cho 31.
Do ƯCLN(6;31) = 1 nên x+7y chia hết cho 31
Vậy : Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31
x+7y chia hết cho 31
=>6(x+7y) chia hết cho 31
=>6x+42y chia hết cho 31
=>6x+11y+31y chia hết cho 31
Vì 31y chia hết cho 31=>6x+11y chia hết cho 31
zậy ...
cho A bằng 21 +22+ 23 + .......... + 2120
a, chứng tỏ rằng A chia hết cho 7
b, chứng tỏ rằng A chia hết cho 31
c, chứng tỏ rằng A chia hết cho 217
cảm ơn ^-^
Cho B= 5+52+53+...589 +590. Chứng tỏ rằng B chia hết cho 31
\(B=5+5^2+5^3+...+5^{88}+5^{89}+5^{90}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{88}+5^{89}+5^{90}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{88}\left(1+5+5^2\right)\)
\(=31\left(5+5^4+...+5^{88}\right)⋮31\)
Chứng tỏ rằng: Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31.
Ta có: 6( x + 7y ) = 6x + 42y
Vì 6x + 11y - ( 6x + 42y ) = 6x - 6x + 11y - 42y = -31y mà -31 Chia hết cho 31 nên 6x +11Y - 6( x + 7y) chia hết cho 31 nên 6x + 11Y - ( x + 7y) chia hết cho 31. Vậy mà 6x + 11y chia hết cho 31 nên để 6x + 11y - (x + 7y) chia hết cho 31 thì x + 7y chia hết cho 31(đpcm)
B = 2 + $2^{3}$ + $2^{5}$ + ... + $2^{31}$ chứng tỏ rằng B chia hết cho 10
`B = 2 + 2^3 + 2^5 + 2^7 + ... + 2^31`.
`<=> (2 + 8) + 2^4(2 + 8) + 2^8(2 + 8) + ... + 2^28(2 + 8)`.
`<=> (1 + 2^4 + 2^8 + ... + 2^28)(2+8)`
`<=> 10 . (1 + 2^4 + 2^8 + ... + 2^28)`.
Vì `(1 + 2^4 + ... + 2^28) in ZZ`.
`=> 10 . (1+2^4 + ... + 2^28) vdots 10`.
B = 2 + $2^{3}$ + $2^{5}$ + ... + $2^{31}$ chứng tỏ rằng B chia hết cho 10
B=2(1+2^2)+2^5(1+2^2)+...+2^29(1+2^2)
=5(2+2^5+...+2^29)
=10(1+2^4+...+2^28) chia hết cho 10
Chứng tỏ rằng
B = 2^2 + 2^3 + ..............+ 2^100 vừa chia hết cho 31 vừa chia hết cho 5
Sửa đề: \(B=2+2^2+2^3+...+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+2^5\cdot\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)⋮5\)
\(B=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(2+2^6+...+2^{96}\right)⋮31\)
Chứng tỏ rằng
B = 2^2 + 2^3 + ..............+ 2^100 vừa chia hết cho 31 vừa chia hết cho 5
did you studied at le van tam primary school
Chi x,y thuộc Z. Chứng tỏ rằng nếu 6x+1y chia hết cho 31 thì x+7y chia hết cho 31.
Ngược lại nếu x+3y chia hết cho 31 thì 6x+11y chia hết cho 31
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31