Tính
A) (3x^n+1 - 2x^n) - 4x^n
B) (2x^2n+3x^2n-1)×(x^1-2n - 3x^2-2n)
Chứng minh rằng
a, \(\left(2n-3\right).n-2n.\left(n+2\right)⋮7\forall n\in Z\)
b, \(n.\left(2n-3\right)-2n.\left(n+1\right)⋮5\forall n\in Z\)
Rút gọn
a, (3x-5) . (2x+11) - (2x+3) . (3x+7)
b, (x+2) . (2x2-3x+4) - (x2-1) . (2x+1)
c, 3x2 .(x2+2) + 4x. (x2-1) - (x2+2x+3) . (3x2-2x+1)
\(a,\left(2x-3\right)n-2n\left(n+2\right)\)
\(=n\left(2x-3-2n-4\right)\)
\(=-7n\)
Vì \(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM
\(b,n\left(2n-3\right)-2n\left(n+1\right)\)
\(=n\left(2n-3-2n-2\right)\)
\(=-5n⋮5\) (ĐPCM)
Rút gọn
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=-76\)
\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)
\(=9\)
\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)
\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)
= -3
Câu 1:(x2-1).(x2+2x), câu 2: (2x-1)(3x+2).(3-x) câu 4: -2x3y(2x3-3y+5yz) câu 5 (3xn+1-2xn).4x câu 6 (2x2n+3x2n-1).(x1-2n- 3x2-2n) câu 7 : 3x.(x2-2)
Bài 2:
a)(3x^n + 1 - 2x^n )4x^2
b) 2(x^2n + 2xnyn+y^2n)-y^n(4x^n+2y^n)
c)(x^2n+xnyn+y^2n)(x^n-y^n)(x^3n+y^3n)
d)4^n+1 - 3.4^n
a: \(4x^2\left(3x^{n+1}-2x^n\right)\)
\(=4x^2\cdot3x^{n+1}-4x^2\cdot2x^n\)
\(=12x^{n+3}-8x^{n+2}\)
b: \(2\left(x^{2n}+2x^ny^n+y^{2n}\right)-y^n\left(4x^n+2y^n\right)\)
\(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)
\(=2x^{2n}\)
c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)
\(=x^{6n}-y^{6n}\)
d: \(=4^n\cdot4-3\cdot4^n=4^n\)
a: 4x2(3xn+1−2xn)4x2(3xn+1−2xn)
=4x2⋅3xn+1−4x2⋅2xn=4x2⋅3xn+1−4x2⋅2xn
=12xn+3−8xn+2=12xn+3−8xn+2
b: 2(x2n+2xnyn+y2n)−yn(4xn+2yn)2(x2n+2xnyn+y2n)−yn(4xn+2yn)
=2x2n+4xnyn+2y2n−4xnyn−2y2n=2x2n+4xnyn+2y2n−4xnyn−2y2n
=2x2n=2x2n
c: =(x3n−y3n)(x3n+y3n)=(x3n−y3n)(x3n+y3n)
=x6n−y6n=x6n−y6n
d: =4n⋅4−3⋅4n=4n
Bài 1: Làm tính nhân
a. \(\left(2x^{2n}+3x^{2n-1}\right)\left(x^{1-2n}-3x^{2-2n}\right)\)
b. \(\left(25x^2+10xy+4y^2\right)\left(5x-2y\right)\)
c. \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
a: \(=2x^{2n+1-2n}-2\cdot x^{2n}\cdot3\cdot x^{2-2n}+3\cdot x^{2n-1+1-2n}-9\cdot x^{2n-1+2-2n}\)
\(=2x-6x^2+3-9x\)
\(=-6x^2-7x+3\)
b: \(=\left(5x\right)^3-\left(2y\right)^3=125x^3-8y^3\)
Bài 1: Tìm x, biết:
a) (3x2 - x + 1) (x - 1) + x2 (4 - 3x) = \(\dfrac{5}{2}\)
b) 2x2 + 3 (x - 1) (x + 1) = 5x (x + 1)
Bài 2: Tính:
a) (3xn+1 - 2xn) 4x2
b) (2x2n + 3x2n-1) (x1-2n - 3x2-2n)
Bài 3: Tính giá trị biểu thức:
A = 5x (x - 4y) - 4y (y - 5x) với x = \(\dfrac{-1}{5}\), y = \(\dfrac{-1}{2}\)
BT6: Thu gọn, chỉ ra phần hệ số và tìm bậc của các đơn thức sau:
a, A=3/4x^n-1.4/5x^2n+1y^2n+1.5/6xy^n+1
b, B=6/4x^3-n.4/2x^4-ny^5-n.2/6y^6-n
c, C= -4/3x^2-ny.6/7x^2n-3y^n-1.-1/2xy
d, D=1/5xy^n+1.4/3x^n+1y.15/7x^ny^n
a: \(=\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot x^{n-1+2n+1+1}\cdot y^{2n+1+n+1}=\dfrac{1}{2}x^{3n+1}y^{3n+2}\)
Hệ số: 1/2
Bậc: 6n+3
b: \(=\dfrac{6}{5}\cdot\dfrac{4}{2}\cdot\dfrac{2}{6}\cdot x^{3-n+4-n}\cdot y^{5-n+6-n}=\dfrac{4}{5}x^{7-2n}y^{11-2n}\)
Hệ số: 4/5
bậc: 18-4n
c: \(=\dfrac{4}{7}x^{2-n+2n-3+1}y^{1+n-1+1}=\dfrac{4}{7}x^{n-1}y^{n+1}\)
Hệ số: 4/7
Bậc: 2n
d: =4/7x^(2n+2)*y^(2n+2)
Hệ số: 4/7
Bậc: 4n+4
Bài 1 :
a) (3xn + 1 - 2xn) 4x2
b) 2(x2n + 2xnyn +y2n) -yn(4xn +2yn)
c) (x2n + xnyn +y2n)(xn-yn)(x3n + y3n)
d)4n+1-3.4n
a: \(4x^2\left(3x^{n+1}-2x^n\right)\)
\(=12x^{n+3}-8x^{n+2}\)
b: \(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)
\(=2x^{2n}\)
c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)=x^{6n}-y^{6n}\)
d: \(=4^n\cdot4-3\cdot4^n=4^n\)
tính :
(2x^2n + 3x^2n-1). ( x^1-2n - 3x^2-2n)
a/ Tìm số a để đa thức 2x³ -3x² + x + a chia hết cho đa thức x + 2 . . b/ Tìm n a/ Tìm số a để đa thức 2x³ 3x² + x + a chia hết cho đa thức x + 2 b/ Tìm n e Z để 2n² – n + 2 chia hết cho 2n +1\(\in\) Z để 2n² – n + 2 chia hết cho 2n +1