Cho x,y số thực thỏa mãn:x2 +2xy+7(x+y)+2y2+10=0
Tìm Min và Max: S=x+y+3
Cho x,y số thực thỏa mãn:x2 +2xy+7(x+y)+2y2+10=0
Tìm Min và Max: S=x+y+3
Cho x,y thỏa mãn \(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
Tìm min max của S= x + y + 1
pt \(\Leftrightarrow\)\(\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}=-y^2+\frac{49}{4}-10\)
\(\Leftrightarrow\)\(\left(x+y+\frac{7}{2}\right)^2=-y^2+\frac{9}{4}\le\frac{9}{4}\)
\(\Leftrightarrow\)\(\frac{-3}{2}\le x+y+\frac{7}{2}\le\frac{3}{2}\)
\(\Leftrightarrow\)\(-4\le x+y+1\le-1\)
Dấu "=" tự xét nhé
bt x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0
tìm max và min của B=x+y+2020
\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)
\(\Rightarrow-4\le x+y\le-2\)
\(\Rightarrow2016\le B\le2018\)
\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)
\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)
Bài 1: CHo 2 số thực x,y sao cho x+y=1. Tìm Min của M=5x2+y2
Bài 2: Cho 2 số x,y thỏa mãn x2+2xy+8(x+y)+2y2+12=0 Tìm Max và Min của N=x+y+1
Cho x,y thỏa mãn \(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
Tìm min max của S= x + y + 1
Bài 1: cho x,y là các số thực thõa mãn \(\sqrt{x+2}-y^3=\sqrt{y+3}-x^3.\)
tìm MIN của \(B=x^2-2y^2+2xy+2y+10\)
Bài 2: cho 3 số thực x,y,z thỏa mãn \(x^2+y^2+z^2=3\)
tìm MAX và MIN của \(P=x+y+2z\)
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
cho x,y thỏa: (x+y)^2 +7(x+y)+y^2+10=0 . Tìm Max và Min của T=x+y+1
Ta có:
\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
\(x^2+y^2+2xy+7x+7y+y^2+10=0\)
\(x^2+y^2+1+2xy+2x+2y+5x+5y+5+4=0\)
\(\left(x+y+1\right)^2+5\left(x+y+1\right)+4=0\)
\(\left(x+y+1\right)^2+\left(x+y+1\right)+4\left(x+y+1\right)+4=0\)
\(\left(x+y+1\right)\left(x+y+2\right)+4\left(x+y+1\right)=0\)
\(\left(x+y+1\right)\left(x+y+6\right)=0\)
\(x+y=-1\)\(x+y=-6\)Max T=x+y+1=-6+1=-5 <=> x+y=-6
Min T=x+y+1=-1+1=0 <=> x+y=-1
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Với x,y là các số thực, ta có : x2 + 6( x + y ) + 2xy + 2y2 + 6 = 0
Tìm Min, Max S= x + y