Cho a,b,c > 0 . CMR :
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}\)
Cho a,b,c >0 .CMR:
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{a}{c+b}}+\sqrt{\dfrac{c}{a+b}}\)
Cho a, b, c>0. CMR: \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Áp dụng BĐT cosi:
\(\sqrt{\dfrac{b+c}{a}}\le\dfrac{\dfrac{b+c}{a}+1}{2}=\dfrac{\dfrac{a+b+c}{a}}{2}=\dfrac{a+b+c}{2a}\\ \Leftrightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Cmtt \(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{c+a}}\ge\dfrac{2c}{a+b+c}\)
Cộng vế theo vế 3 BĐT trên:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c+a\\c=a+b\end{matrix}\right.\Leftrightarrow a+b+c=2\left(a+b+c\right)\)
\(\Leftrightarrow a+b+c=0\) (vô lí vì \(a,b,c>0\))
Do đó dấu "=" ko xảy ra hay \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a,b,c > 0 và \(a^2+b^2+c^2+abc\ge4\)
CMR: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge\dfrac{a}{\sqrt{2-a}}+\dfrac{b}{\sqrt{2-b}}+\dfrac{c}{\sqrt{2-c}}\)
Cho a, b, c > 0 . CMR :
A= \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>2\)
\(\dfrac{\dfrac{b+c}{a}+\dfrac{a}{a}}{2}>=\sqrt{\dfrac{b+c}{a}\cdot\dfrac{a}{a}}\)
=>\(\dfrac{a+b+c}{2a}>=\sqrt{\dfrac{b+c}{a}}\)
=>\(\sqrt{\dfrac{a}{b+c}}>=\dfrac{2a}{a+b+c}\)
Tương tự, ta có: \(\sqrt{\dfrac{b}{a+c}}>=\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}>=\dfrac{2c}{a+b+}\)
=>A>=2
Cho a,b,c >0 .CMR:
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}\)
1)Cho a;b;c>0 thỏa \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)
Chứng minh \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le1\)
2) Cho a;b;c>0
CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a;b;c>0 thỏa a+b+c=3
CMR \(\dfrac{a+b}{\sqrt{a^2+b^2+6c}}+\dfrac{b+c}{\sqrt{b^2+c^2+6a}}+\dfrac{c+a}{\sqrt{c^2+a^2+6b}}>2\)
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Cho \(a,b>0;c\ne0\)
CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Lời giải:
$\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}$
$\Leftrightarrow a+b=a+c+b+c+2\sqrt{(a+c)(b+c)}$
$\Leftrightarrow 2c+2\sqrt{(a+c)(b+c)}=0$
$\Leftrightarrow c+\sqrt{(a+c)(b+c)}=0$
\(\Leftrightarrow \left\{\begin{matrix} -c=\sqrt{(a+c)(b+c)}\\ c< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c^2=(c+a)(c+b)\\ c< 0\end{matrix}\right.\)
\( \Leftrightarrow \left\{\begin{matrix} ab+bc+ac=0\\ c< 0\end{matrix}\right.\Leftrightarrow \frac{ba+bc+ac}{abc}=0\) (do $a,b>0$)
$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
(đpcm)
Cho a,b∈Z, c≠0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
CMR: \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)
\(\Leftrightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\)
\(\Leftrightarrow c+\sqrt{\left(a+c\right)\left(b+c\right)}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}c< 0\\-c=\sqrt{\left(a+c\right)\left(b+c\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c< 0\\c^2=\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c< 0\\ab+bc+ac=0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\left(đúng\right)\)
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b
Cho a, b, c > 0. CMR :
\(\dfrac{\sqrt{a^2+b^2}}{c}+\dfrac{\sqrt{b^2+c^2}}{a}+\dfrac{\sqrt{a^2+c^2}}{b}\ge2\left(\dfrac{a}{\sqrt{b^2+c^2}}+\dfrac{b}{\sqrt{a^2+c^2}}+\dfrac{c}{\sqrt{a^2+b^2}}\right)\)