\(\dfrac{\dfrac{b+c}{a}+\dfrac{a}{a}}{2}>=\sqrt{\dfrac{b+c}{a}\cdot\dfrac{a}{a}}\)
=>\(\dfrac{a+b+c}{2a}>=\sqrt{\dfrac{b+c}{a}}\)
=>\(\sqrt{\dfrac{a}{b+c}}>=\dfrac{2a}{a+b+c}\)
Tương tự, ta có: \(\sqrt{\dfrac{b}{a+c}}>=\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}>=\dfrac{2c}{a+b+}\)
=>A>=2