đặt \(\left\{{}\begin{matrix}\sqrt{a}=x\\\sqrt{b}=y\\\sqrt{c}=z\end{matrix}\right.\)
=>đề bài đưa về
\(=>P=\dfrac{x^2+y^2}{z}+\dfrac{y^2+z^2}{x}+\dfrac{x^2+z^2}{y}\ge2\left(x+y+z\right)\)
có \(P=\dfrac{x^2}{z}+\dfrac{y^2}{z}+\dfrac{y^2}{x}+\dfrac{z^2}{x}+\dfrac{x^2}{y}+\dfrac{z^2}{y}\ge\dfrac{\left(2x^{ }+2y^{ }+2z^{ }\right)^2}{2\left(x+y+z\right)}\)
\(=\dfrac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}=2\left(x+y+z\right)\left(dpcm\right)\)
dấu"=" xảy ra<=>x=y=z