\(=\dfrac{\sqrt{ab}}{b}+\sqrt{\dfrac{a^2b}{b^2a}}=\dfrac{\sqrt{ab}}{b}+\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{ab}}{b}+\dfrac{\sqrt{ab}}{b}=\dfrac{2\sqrt{ab}}{b}\left(B\right)\)
\(=\dfrac{\sqrt{ab}}{b}+\sqrt{\dfrac{a^2b}{b^2a}}=\dfrac{\sqrt{ab}}{b}+\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{ab}}{b}+\dfrac{\sqrt{ab}}{b}=\dfrac{2\sqrt{ab}}{b}\left(B\right)\)
Câu 87*: Biến đổi ab \(\sqrt{\dfrac{a}{3b}}\) - a2\(\sqrt{\dfrac{3b}{a}}\)= m\(\sqrt{3ab}\)với a > 0 , b > 0 thì m bằng:
A . \(\dfrac{-2a}{3}\); B . \(\dfrac{2a}{3}\); C.\(\dfrac{-2}{3}\); D.3a.
giải hộ mik vs
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
Chứng minh đẳng thức:
a) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
( với a > hoặc bằng 0; b > hoặc bằng 0; a khác b )
Chứng minh các đẳng thức sau:
c) \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\) ( với a,b > 0 và a \(\ne\) b )
a)A=\(\dfrac{1}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\) với a>\(\dfrac{1}{2}\)
b)A=\(\dfrac{\sqrt{x-2\sqrt{x-1}}}{\sqrt{x-1}-1}\)+\(\dfrac{\sqrt{x+2\sqrt{x-1}}}{\sqrt{x-1+1}}\) với x>2
c)\(\dfrac{a+b}{b^2}\)\(\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}\) với a+b>0; b≠0
d)A=\(\left(\sqrt{\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) với a≥0; a≠1
e)A=\(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)}{\left(x-1\right)^4}}\) với x≠1; y≠1; y>o
f)A=\(\sqrt{\dfrac{m}{1-2x+x^2}}\)\(\sqrt{\dfrac{4m-8mx+4mx^2}{81}}\) với m>0; x≠4
g)A=\(\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\)\(\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\) với x>0; x≠4
h)\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)\(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) với a≥0; a≠1
M = \(\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\)
a) Rút gọn M
b) Tìm những GT nguyên của A để M có GT nguyên
!!Help
Bài: C/m đẳng thức
\(\dfrac{1}{\sqrt{4}-\sqrt{5}}\) : \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\) = \(\dfrac{1}{a-b}\) với a,b>0 , a,b≠0
Cho a; b; c là các số dương. Tìm GTLN của
\(A=\dfrac{\sqrt{ab}}{a+b+2c}+\dfrac{\sqrt{bc}}{b+c+2a}+\dfrac{\sqrt{ac}}{a+c+2b}\)
Rút gọn các biểu thức sau:
a) A=\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)(x≥0 , y≥0 , xy≠0)
b) B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)(x≥0 , y≥0 , x≠y)
c) C=\(\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)(a≥0 , a≠\(\dfrac{1}{4}\))
d) D=\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(a≥0 , a≠4)