Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trương  Bảo Ngân

Cho a,b,c > 0 . CMR :

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}\)

Nguyễn Thị Ngọc Thơ
2 tháng 8 2018 lúc 23:13

_ Chứng minh VT <2 .

Với a,b,c > 0, ta có:

\(a< a+b\Rightarrow\dfrac{a}{a+b}< 1=\dfrac{c}{c}\Rightarrow\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\) (1)

\(b< b+c\Rightarrow\dfrac{b}{b+c}< 1=\dfrac{a}{a}\Rightarrow\dfrac{b}{b+c}< \dfrac{a+b}{a+b+c}\) (2)

\(c< c+a\Rightarrow\dfrac{c}{c+a}< 1=\dfrac{b}{b}\Rightarrow\dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\) (3)

Từ (1) , (2) và (3), Cộng vế theo vế ta có:

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\)(*)

_Chứng minh VP > 2.

Theo BĐT Cô-si, ta có:

\(\sqrt{\dfrac{b+c}{a}.1}\le\left(\dfrac{b+c}{a}+1\right):2=\dfrac{b+c+a}{2a}\)

Do vậy : \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Tương tự:\(\sqrt{\dfrac{b}{a+c}}\ge\dfrac{2b}{a+b+c},\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng vế theo vế

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu ''='' xảy ra \(\left\{{}\begin{matrix}a=b+c\\b=a+c\\c=a+b\end{matrix}\right.\)

\(\Rightarrow a+b+c=0\) (trái với g/t a,b,c >0)

Vậy đẳng thức khong xảy ra dấu ''=''

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>2\) (**)

Từ (*) và (**) \(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
dia fic
Xem chi tiết
:vvv
Xem chi tiết
dia fic
Xem chi tiết
Đào Thị Hoàng Yến
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
dia fic
Xem chi tiết
dia fic
Xem chi tiết