\(\sqrt[3]{4-2x}+5=3\)
Nhìn thấy bậc 3 là nản r :(
* Tìm điều kiện để căn thức bậc hai có nghĩa
a. \(\sqrt{3-2x}\)
b. \(\sqrt{\dfrac{-5}{2x+1}}\)
* Giải phương trình
a. \(\sqrt{\left(2x-3\right)^2}=5\)
b. \(\sqrt{9x+9}+\sqrt{4x+4}-\sqrt{16x+16}=3\)
Bài 1 :
a, ĐKXĐ : \(3-2x\ge0\)
\(\Rightarrow x\le\dfrac{3}{2}\)
Vậy ...
b, ĐKXĐ : \(\left\{{}\begin{matrix}-\dfrac{5}{2x+1}\ge0\\2x+1\ne0\end{matrix}\right.\)
\(\Rightarrow2x+1< 0\)
\(\Rightarrow x< -\dfrac{1}{2}\)
Vậy ...
a,ĐKXĐ \(3-2\text{x}>0\Leftrightarrow-2x>-3\Leftrightarrow\text{x}< \dfrac{3}{2}\)
b,\(\dfrac{-5}{2x+1}>0\Leftrightarrow2x+1< 0\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\)
( bây giờ mình bận nên làm trước 2 bài =))
a, \(x\le\dfrac{3}{2}\)
b, \(x< -\dfrac{1}{2}\)
*a, \(\sqrt{\left(2x-3\right)^2}=5=>|2x-3|=5=>\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
b, \(\sqrt{9x+9}+\sqrt{4x+4}-\sqrt{16x+16}=3\)
\(< =>3\sqrt{x+1}+2\sqrt{x+1}-4\sqrt{x+1}=3\)\(\left(x\ge-1\right)\)
\(< =>\sqrt{x+1}=3=>x+1=9=>x=8\left(tm\right)\)
TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC TRONG CĂN BẬC 2 CÓ NGHĨA
1/\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
2/\(\sqrt{-2x+3}\)
3/\(\sqrt{-7x-14}\)
4/\(\sqrt{\dfrac{x^2+2}{1-4x}}\)
5/\(\sqrt{-5-3x}\)
1) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
2) ĐKXĐ: \(x\le\dfrac{3}{2}\)
3) ĐKXĐ: \(x\le-2\)
4) ĐKXĐ: \(x< \dfrac{1}{4}\)
5) ĐKXĐ: \(x\le-\dfrac{5}{3}\)
Tính DKXD của các căn bậc thức sau:
a)\(\sqrt{2x-4}\)
b)\(\sqrt{\dfrac{3}{-2x+1}}\)
c)\(\sqrt{\dfrac{-3x+5}{-4}}\)
d)\(\sqrt{-5\left(-2x+6\right)}\)
e)\(\sqrt{\left(x^2+2\right)\left(x-3\right)}\)
f)\(\sqrt{\dfrac{x^2+5}{-x+2}}\)
a)đk:`2x-4>=0`
`<=>2x>=4`
`<=>x>=2.`
b)đk:`3/(-2x+1)>=0`
Mà `3>0`
`=>-2x+1>=0`
`<=>1>=2x`
`<=>x<=1/2`
c)`đk:(-3x+5)/(-4)>=0`
`<=>(3x-5)/4>=0`
`<=>3x-5>=0`
`<=>3x>=5`
`<=>x>=5/3`
d)`đk:-5(-2x+6)>=0`
`<=>-2x+6<=0`
`<=>2x-6>=0`
`<=>2x>=6`
`<=>x>=3`
e)`đk:(x^2+2)(x-3)>=0`
Mà `x^2+2>=2>0`
`<=>x-3>=0`
`<=>x>=3`
f)`đk:(x^2+5)/(-x+2)>=0`
Mà `x^2+5>=5>0`
`<=>-x+2>0`
`<=>-x>=-2`
`<=>x<=2`
a, ĐKXĐ : \(2x-4\ge0\)
\(\Leftrightarrow x\ge\dfrac{4}{2}=2\)
Vậy ..
b, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3}{-2x+1}\ge0\\-2x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow-2x+1>0\)
\(\Leftrightarrow x< \dfrac{1}{2}\)
Vậy ..
c, ĐKXĐ : \(\dfrac{-3x+5}{-4}\ge0\)
\(\Leftrightarrow-3x+5\le0\)
\(\Leftrightarrow x\ge\dfrac{5}{3}\)
Vậy ...
d, ĐKXĐ : \(-5\left(-2x+6\right)\ge0\)
\(\Leftrightarrow-2x+6\le0\)
\(\Leftrightarrow x\ge-\dfrac{6}{-2}=3\)
Vậy ...
e, ĐKXĐ : \(\left(x^2+2\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow x-3\ge0\)
\(\Leftrightarrow x\ge3\)
Vậy ...
f, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{x^2+5}{-x+2}\ge0\\-x+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow-x+2>0\)
\(\Leftrightarrow x< 2\)
Vậy ...
Bài 1:
a.Tìm điều kiện để căn thức bậc 2 có nghĩa \(\sqrt{\dfrac{-5}{2x+1}}\)
b. \(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}\)
a)ĐK:\(-\dfrac{5}{2x+1}\ge0\) và \(2x+1\ne0\)
\(\Leftrightarrow2x+1>0\) \(\Leftrightarrow x>-\dfrac{1}{2}\)
Vậy \(x< -\dfrac{1}{2}\) thì căn thức có nghĩa
b)\(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}=\sqrt[3]{4^3}+\sqrt[3]{-3^3}-\sqrt[3]{-8}\)
\(=4+\left(-3\right)-\left(-2\right)\)
\(=3\)
1. Cho hai đa thức: R(x)=-8(x^4)+6(x^3)+2(x^2)+5x-1 và S(x)=(x^4)-8(x^3)+2x+3. Tính: a) R(x)+S(x); b) R(x)-S(x). 2. Xác định bậc của hai đa thức là tổng, hiệu của: A(x)=8(x^5)+6(x^4)+2(x^2)-5x+1 và B(x)=8(x^5)+8(x^3)+2x-3.
\(a,\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
\(b,\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
giúp mik 2 con này nhé, nhìn thấy dễ nhưng tính ra thấy khó lắm
a) \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
\(\Leftrightarrow-\left(\sqrt{3}+11\sqrt{5}+\sqrt{29}\right)\)
\(\Leftrightarrow\sqrt{637+22\sqrt{145}+2\sqrt{6\left(317+11\sqrt{145}\right)}}\)
\(\Leftrightarrow\sqrt{3}-11\sqrt{5}-\sqrt{29}\)
b) Câu hỏi của Nguyễn Trung Anh - Toán lớp 9 - Học toán với OnlineMath giống câu này!
a/ \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\sqrt{5}+1=1\)
b/ Câu hỏi của Nguyễn Trung Anh - Toán lớp 9 - Học toán với OnlineMath giống câu này.
Hàm số nào sau đây là hàm số bậc hai?
a) \(y = 9{x^2} + 5x + 4\)
b) \(y = 3{x^3} + 2x + 1\)
c) \(y = - 4{(x + 2)^3} + 2(2{x^3} + 1) + x + 4\)
d) \(y = 5{x^2} + \sqrt x + 2\)
Hàm số ở câu a) \(y = 9{x^2} + 5x + 4\) là hàm số bậc hai với \(a = 9,b = 5,c = 4\)
Hàm số ở câu b), c) không phải là hàm số bậc hai vì chứa \({x^3}\)
Hàm số ở câu d) \(y = 5{x^2} + \sqrt x + 2\) không phải là hàm số bậc hai vì chứa \(\sqrt x \)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
câu 1 :
a) thực hiện phép tính ; \(5\sqrt{3}-\sqrt{48}+\sqrt{\left(\sqrt{3}-3\right)^2}\)
b) rút gọn biểu thức : \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
câu 2:
a) vẽ đồ thị hàm số y=2x+4
b) với giá trị nào của m thì hàm số y=(2m-5)x+3 là hàm số bậc nhất
c) với giá trị nào của m thì hai đường thẳng y=2x+4 và y=3x-3m+1 cắt nhau tại một điểm trên trục tung