Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HITANDRUN(NEW)
Xem chi tiết
ILoveMath
7 tháng 3 2022 lúc 10:53

\(\dfrac{a}{b}=\dfrac{c}{d}\\ \Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\\ \Rightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\\ \Rightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\\ \Rightarrow\dfrac{-\left(a-b\right)}{a}=\dfrac{-\left(c-d\right)}{c}\\ \Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

minhduc
Xem chi tiết
My Love bost toán
18 tháng 8 2018 lúc 20:50

bạn hãy vào:

olm.vn/hoi-dap/question/98929.html

vũ tiền châu
18 tháng 8 2018 lúc 20:50

Ta có \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)=0

=> a^3+b^3+c^3=3abc(ĐPCM )

^.^

Bùi Vương TP (Hacker Nin...
18 tháng 8 2018 lúc 20:51

Gt<=>(a+b+c)^3=0

<=>(a+b)^3+c+3+3(a+b)c(a+b+c)=0

<=>a^3+b^3+c^3+3ab(a+b)=0 (vì a+b+c=0)

<=>a^3+b^3+c^3=3abc (vì a+b=-c)

Dịu Kun
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 16:46

`(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

`VT>=0`

Dấu "=" xảy ra khi `a=b=c`

Yeutoanhoc
28 tháng 6 2021 lúc 16:53

`a^3+b^3+c^3=3abc`

`<=>a^3+b^3+c^3-3abc=0`

`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`

`**a+b+c=0`

`**a^2+b^2+c^2=ab+bc+ca`

`<=>a=b=c`

Edogawa Conan
Xem chi tiết
Hồng Quang
27 tháng 3 2018 lúc 21:20

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

TM Vô Danh
27 tháng 3 2018 lúc 21:24

a+b+c=0

\(\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+b+c\right)+3bc\left(a+b+c\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

mk ko chắc cách bn đúng nhưng cách của mk là phù hợp nhất đó

Akai Haruma
28 tháng 3 2018 lúc 14:34

Không nên chứng minh như thế này nhé. Ở ngay phần \(a+b=\frac{3abc}{-3ab}\) đã sai sót vì bạn không tính đến trường hợp \(a=0\) hoặc $b=0$ đã thực hiện phép chia như vậy.

Sử dụng hằng đẳng thức: \((a+b)^3=a^3+b^3+3ab(a+b)\) ta có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3\)

Vì \(a+b+c=0\Rightarrow a+b=-c\). Thay vào biểu thức trên:

\((a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc\)

Do đó:

\(a^3+b^3+c^3=3abc\)

Nguyễn An
Xem chi tiết
Cúc Suri
Xem chi tiết
Trần Việt Linh
15 tháng 12 2016 lúc 20:09

1) Có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3-3abc=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

2)Có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)

\(\Leftrightarrow a^3+b^3+3abc=c^3\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

 

SuSu
Xem chi tiết
hgf
28 tháng 10 2018 lúc 8:58

1. \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

2. \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

3.Còn có a + b + c = 0 nữa mà bn.

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)

+ \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

Linh Trịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2022 lúc 19:29

\(\Leftrightarrow ab-4a+3b-12-\left(ab+4a-3b-12\right)=0\)

=>-4a+3b-4a+3b=0

=>-8a=-6b

=>4a=3b

hay a/3=b/4

Rhider
21 tháng 1 2022 lúc 19:31

Ta có :

\(\left(a+3\right)\left(b-4\right)\left(a-3\right)\left(b+4\right)=0\)

\(\Rightarrow ab-4a+3b-12-\left(ab+4a-3b-12\right)=0\)

\(\Rightarrow ab-4a+3b-12-ab+4a+3b+12=0\)

\(\Rightarrow6b-8a=0\)

\(\Rightarrow3b=4a\)

\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}\)

Thương Đoàn
Xem chi tiết
nguyenduckhai /lop85
29 tháng 11 2021 lúc 13:09

M=a^3+b^3+c^3-3abc/(a-b)^3+(b-c)^3+(c-a)^3

nguyenduckhai /lop85
29 tháng 11 2021 lúc 13:09

nè ban