CMR 2m^4 + 2m + 1 >= 0 với mọi m
Cmr: phương trình (2m2+3m+4)x4 + x -1=0 có nghiệm với mọi m
Xét hàm \(f\left(x\right)=\left(2m^2+3m+4\right)x^4+x-1\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng thuộc R
\(f\left(0\right)=-1< 0\)
\(f\left(1\right)=2m^2+3m+4=2\left(m+\frac{3}{4}\right)^2+\frac{23}{8}>0\) ; \(\forall m\)
\(\Rightarrow f\left(0\right).f\left(1\right)< 0\) ; \(\forall m\)
\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm trên khoảng \(\left(0;1\right)\) với mọi m hay pt đã cho luôn có nghiệm
CMR: phương trình sau luôn có nghiệm duy nhất với mọi m : m^2x-2m(x+1)+3x+1=0
\(\Leftrightarrow\left(m^2-2m+3\right)x=2m-1\)
Do \(m^2-2m+3=\left(m-1\right)^2+2\ne0;\forall m\)
\(\Rightarrow\) Phương trình luôn có nghiệm duy nhất với mọi m
Cho hai phương trình:x^2-3x+2m+6=0(1) và x^2+x-2m-10=0 CMR: với mọi m, ít nhất 1 trong 2 phương trình có nghiệm
Bài 4: Cho PT sau : ( m2 + 1 ) x - 2m = 0 ( m là tham số)
a) CMR : PT là PT bậc nhất 1 ẩn với mọi n
b) Tìm m để nghiện của PT
- Đạt GTLN
- Đạt GTNN
Cho PT:x^2-2(m-1)x+2m-5=0
a)CMR: phương trình luôn có 2 nghiệm phân biệt x1,x2 với mọi m
b)Tìm giá trị m để (x1^2-2mx1+2m-1)(x2^2-2mx2+2m-1) <0
a)PT: \(x^2-2\left(m-1\right)x+2m-5=0\)
\(\Rightarrow\Delta=\left(-2\left(m-1\right)\right)^2-4.1.\left(2m-5\right)\\ =4m^2-16m+24=\left(2m-4\right)^2+8\ge8\left(\forall m\in R\right)\)
Vậy phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi m.
p/s: phần (b) mình sẽ giúp bạn trả lời sau nha!
cho \(x^2-2\left(m-1\right)x-2m=0\) (m tham số). CMR: PT luôn có 2 nghiệm phân biệt với mọi m. Gọi `x_1 ;x_2` là 2 nghiệm của PT, tìm tất cả giá trị m để \(x_1^2+x_1-x_2=5-2m\)
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
CMR phương trình sau vô nghiệm với mọi m:
1) x2 - 2 ( m + 1) x + 2m2 + m + 3 = 0
2) ( m2 + 1 ) x2 + 2 ( m + 2 ) x + 6 = 0
3) x2 + 2( m - 3) x + 2m2 - 7m + 10 = 0
CMR phương trình sau vô nghiệm với mọi m:
1) x2 - 2 ( m + 1) x + 2m2 + m + 3 = 0
2) ( m2 + 1 ) x2 + 2 ( m + 2 ) x + 6 = 0
3) x2 + 2( m - 3) x + 2m2 - 7m + 10 = 0
1/ \(\Delta'=\left(m+1\right)^2-2m^2-m-3=m^2+2m+1-2m^2-m-3\)
\(=-m^2+m-2=-\left(m^2-m+\frac{1}{2}\right)-\frac{3}{2}\le-\frac{3}{2}\)
=> pt vô nghiệm với mọi m
2/ Vì \(m^2+1\ge1\forall m\)
\(\Rightarrow\Delta'=\left(m+2\right)^2-6\left(m^2+1\right)\)
\(=m^2+4m+4-6m^2-6=-5m^2+4m-2\)
\(=-5\left(m^2+\frac{4}{5}m+\frac{4}{25}\right)-\frac{6}{5}\le-\frac{6}{5}\)
=> pt vô nghiệm với mọi m
3/\(\Delta'=\left(m-3\right)^2-2m^2+7m-10\)
\(=m^2-6m+9-2m^2+7m-10=-m^2+m-1\)
\(=-\left(m^2-m+\frac{1}{4}\right)-\frac{3}{4}\le-\frac{3}{4}\)
=> pt vô nghiệm với mọi m
Cmr với mọi m ≤ 1 thì \(f\left(x\right)=x^3-3\left(2m-1\right)x^2+\frac{1}{2}\left(m+5\right)x+1-2m\ge0\) với mọi x ≥ 1