Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2]. Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2). Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3). Bài 6: Tìm m để bất phương trình m2 - 2mx + 4 > 0 có nghiệm đúng với mọi ∀x ∈ (-1;0,5)
Cho phương trình \(mx^2+\left(m-1\right)x+m-1=0\)
a) Tìm m để phương trình vô nghiệm.
b) Tìm m để phương trình có hai nghiệm trái dấu.
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(x_1^2+x_2^2-3>0\)
CMR phương trình sau vô nghiệm với mọi m:
1) x2 - 2 ( m + 1) x + 2m2 + m + 3 = 0
2) ( m2 + 1 ) x2 + 2 ( m + 2 ) x + 6 = 0
3) x2 + 2( m - 3) x + 2m2 - 7m + 10 = 0
Tìm m
a) \(mx^3-x^2+2x-8m=0\) có ba nghiệm phân biệt lớn hơn 1
b) \(\left(m-1\right)x^2-2\left(m-2\right)x+m-3=0\) có hai nghiệm x1, x2 thỏa mãn x1 + x2 + x1x2 < 1.
c) \(\left(m-5\right)x^2+2\left(m-1\right)x+m=0\) (1) có 2 nghiệm x1,x2 thỏa x1<2<x2
1)Tìm tất cả giá trị của m để phương trình 2x - \(\sqrt{x-3}\) -m =0 có nghiệm
2)Tìm m để phương trình f(x)=3x2-6mx+2m+1=0 có nghiệm thỏa mãn :
a) x1< -1 ≤ x2 c) x1 < x2 ≤ 2
b) 1 < x1 < x2 d) -2 ≤ x1 ≤ x2
3) Tìm m để phương trình x2 + ( x +1 )2 +\(\dfrac{m}{x^2+x+1}\) -3=0 có 4 nghiệm phân biệt
4) f(x) mx2 + 2(m-3)x +2m =0 có 2 nghiệm phân biệt , x1 ∈ (-1;2) nghiệm còn lại x2 ∉ [ -1 ; 2 ]
Bài 1: Giải các pt sau: 1) x2 + 5x + 6 = 0 2)
x2 - x - 6 = 0
3) (x2 + 1) (x2 + 4x + 4) = 0
4) x3 + x2 + x + 1 = 0
5) x2 - 7x + 6 = 0
6) 2x2 - 3x - 5 = 0
7) x2 + x - 12 = 0
8) 2x3 + 6x2 = x2 + 3x
9) (3x - 1) (x2 + 2) = (3x - 1)(7x - 10)
Bài 2: Cho biểu thức A = (5x - 3y + 1) (7x + 2y -2) a) Tìm x sao cho với y = 2 thì A = 0 b) Tìm y sao cho với x = -2 thì A = 0
Tìm m để phương trình: (m-1)x2 - 2(m-1)x + m - 2 = 0 có đúng 1 nghiệm dương.
Cho phương trình \(\left(m-10\right)x^2-4mx+m-4=0\)
a) Tìm m để phương trình có nghiệm
b) Tìm m để phương trình có hai nghiệm phân biệt đều dương
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(\dfrac{1}{x_1}+\dfrac{1}{x^2}>1\)