Tìm nghiệm của P(x) biết \(P\left(x\right)+\left(2x^2-4xy+6x\right)=3x^2+2x-4xy+3\)
Tìm GTLN của biểu thức:
a) \(-3x^2-6x+4\)
b) \(-x^2+3x-1\)
c) \(\left(x+1\right)^2+\left(2x-1\right)^2-6x^2\)
d) \(-\left(2x^2+4y^2+4xy-2x-3\right)\)
\(A=-3\left(x+1\right)^2+7\le7\)
\(A_{max}=7\) khi \(x=-1\)
\(B=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
\(B_{max}=\frac{5}{4}\) khi \(x=\frac{3}{2}\)
\(C=-x^2-2x+2=-\left(x+1\right)^2+3\le3\)
\(C_{max}=3\) khi \(x=-1\)
\(D=-\left[\left(x+2y\right)^2+\left(x-1\right)^2-4\right]=-\left(x+2y\right)^2-\left(x-1\right)^2+4\le4\)
\(D_{max}=4\) khi \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)
Quy đồng mẫu thức của các phân thức
1. \(\dfrac{x-y}{2x^2-4xy+2y^2};\dfrac{x+y}{2x^2+4xy+2y^2};\dfrac{1}{y^2-x^2}\)
2. \(\dfrac{1}{x^2+8x+15};\dfrac{1}{x^2+6x+9}\)
3. \(\dfrac{1}{\left(a-b\right)\left(b-c\right)};\dfrac{1}{\left(c-b\right)\left(c-a\right)};\dfrac{1}{\left(b-a\right)\left(a-c\right)}\)
1: \(MTC=2\left(x-y\right)\left(x+y\right)\)
\(\dfrac{x-y}{2x^2-4xy+2y^2}=\dfrac{x-y}{2\left(x-y\right)^2}=\dfrac{1}{2\left(x-y\right)}=\dfrac{1\cdot\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{2\left(x-y\right)\left(x+y\right)}\)
\(\dfrac{x+y}{2x^2+4xy+2y^2}\)
\(=\dfrac{x+y}{2\left(x^2+2xy+y^2\right)}\)
\(=\dfrac{x+y}{2\left(x+y\right)^2}=\dfrac{1}{2\left(x+y\right)}=\dfrac{x-y}{2\left(x+y\right)\left(x-y\right)}\)
\(\dfrac{1}{x^2-y^2}=\dfrac{2}{2\left(x^2-y^2\right)}=\dfrac{2}{2\left(x-y\right)\left(x+y\right)}\)
2: \(\dfrac{1}{x^2+8x+15}=\dfrac{1}{\left(x+3\right)\left(x+5\right)}=\dfrac{x+3}{\left(x+3\right)^2\cdot\left(x+5\right)}\)
\(\dfrac{1}{x^2+6x+9}=\dfrac{1}{\left(x+3\right)^2}=\dfrac{x+5}{\left(x+3\right)^2\cdot\left(x+5\right)}\)
3: \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}=\dfrac{1\cdot\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{a-c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\dfrac{1}{\left(c-b\right)\left(c-a\right)}=\dfrac{1}{\left(b-c\right)\left(a-c\right)}=\dfrac{a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\dfrac{1}{\left(b-a\right)\left(a-c\right)}=\dfrac{-1}{\left(a-b\right)\left(a-c\right)}=\dfrac{-\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
Thực hiện phép tính:
\(a,\left(2x^3+y^2-7xy\right).4xy^2\)
\(b,\left(2x^3-x-1\right)\left(5x-2\right)\)
\(c,\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)
\(d,\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)
A/\(\left(2x^3+y^2-7xy\right)4xy^2.\)
\(=8x^4y^2+4xy^4-28x^2y^3\)
B/\(\left(2x^3-x-1\right)\left(5x-2\right)\)
\(=10x^4-5x^2-5x-4x^3+2x+2\)
\(=10x^4-5x^3-3x-4x^3+2\)
C/\(\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)
\(=\left(2x^2-3\right)\left(2x+3\right)^2\)
D/\(\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)
( Bài này áp dụng hằng đẳng thức là làm được ạ )
Thực hiện phép tính:
\(a,\left(2x^3+y^2-7xy\right).4xy^2\)
\(b,\left(2x^3-x-1\right)\left(5x-2\right)\)
\(c,\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)
\(d,\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)
Thực hiện phép tính:
a,(2x3+y2−7xy).4xy2a,(2x3+y2−7xy).4xy2
=>2x3.4xy2+y2.4xy2-7xy.4xy2
=>8x4y2+4xy4-28x2y3
b,(2x3−x−1)(5x−2)
=>10x4-4x3-5x2-3x+2
c: =(2x^2-3)[(2x^2)^2+2x^2*3+3^2]
=8x^6-27
d:\(=\left(3x^2-2y-2x^2+y\right)\left(9x^4-12x^2y+4y^2+6x^4-3x^2y-4x^2y+2y^2+4x^4-4x^2y+y^2\right)\)
\(=\left(x^2-y\right)\left(19x^4-23x^2y+7y^2\right)\)
1 . Tìm GTNN của biểu thức :
M = \(x^2-4xy+4y^2-2x+4y+10\)
2 . Tìm x :
a) \(\left(x+1\right)^3+\left(x-2\right)^3=2x^3+2\left(2x-1\right)^2-9\)
b) \(\left(3x^3+24\right):\left(x+2\right)+\left(2x^3-54\right):\left(x^2+3x+9\right)=6\)
( Mk đang cần gấp . đảm bảo tick trả đầy đủ )
1 M=\(x^2-4xy+4y^2-2x+4y+10\)
=\(\left(x^2-4xy+4y^2\right)+\left(-2x+4y\right)+10\)
\(=\left(x-2y\right)^2-2\left(x-2y\right)+10\)
\(=\left(x-2y\right)\left(x-2y-2\right)+10\)
vì \(\left(x-2y\right)\left(x-2y-2\right)\ge0\)
nên \(\left(x-2y\right)\left(x-2y-2\right)+10\ge10\)
\(\Rightarrow\)A\(\ge13\)
dấu "=" xảy ra khi (x-2y)(x-2y-2)=0
\(\left[{}\begin{matrix}x-2y=0\\x-2y-2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}2y=x\\x-2y=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0;y=0\\x=2;y=1\end{matrix}\right.\)
vậy GTNN của M=10 khi x=0; y=0
x=2;y=1
thức hiên phép nhân:
a)\(3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\)
b)\(\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\)
Bài 1 :
a) \(\left(6x^2+\frac{1}{3}\right)^2\)
b) \(\left(5x-4y\right)^2\)
c) \(\left(2x^2y-3y^2x\right)^2\)
d) \(\left(5x-3\right).\left(5x+3\right)\)
e) \(\left(-4xy-5\right).\left(5-4xy\right)\)
f) \(\left(a^2b+ab^2\right).\left(ab^2-a^2b\right)\)
g) \(\left(3x-4\right)^2+2.\left(3x-4\right).\left(4-x\right)+\left(4-x\right)^2\)
h) \(\left(a^2+ab+b^2\right).\left(a^2-ab+b^2\right)-\left(a^4+b^4\right)\)
đề bài là : dùng hằng đẳng thức để khai triển và thu gọn các biểu thức
TÌM GTNN của bt
a) \(2x^2-4xy+4y^2+2x+5\)
b) \(x\left(1-x\right)\left(x-3\right)\left(4-x\right)\)
a)2x^2-4xy+4y^2+2x+5=x^2-4xy+4y^2+x^2+2x+1+4=(x-2y)^2+(x+1)^2+4>=4(dấu = tự tìm nhé)
b)x(1-x)(x-3)(4-x)=x(x-1)(x-3)(x-4)
=(x^2-4x)(x^2-4x+3)
Đặt x^2-4x=t(t>=-4) bt viết lại t(t+3)=t^2+3t>=-9/4
Dấu= xảy ra khi t=-3/2 >>>tìm x
Ghpt:
a) \(\left\{{}\begin{matrix}x^2+2y^2=2x-2xy+1\\3x^2+2xy-y^2=2x-y+5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4xy+4x^2+4y^2+\dfrac{3}{\left(x+y\right)^2}=7\\2x+\dfrac{1}{x+y}=3\end{matrix}\right.\)