Chứng minh bất đẳng thức : \(a^2+\dfrac{b^2}{4}\ge ab\) .Cảm ơn trước nha!
\(\dfrac{x^2+4}{4}\ge x\)
Chứng tỏ bất đẳng thức sau đúng với mọi x
Em đang cần gấp ạ :<<
Cảm ơn trước ạ
\(\dfrac{x^2+4}{4}\ge x\)
\(\Leftrightarrow\dfrac{4\left(x^2+4\right)}{4}\ge4x\)
\(\Leftrightarrow x^2+4\ge4x\)
\(\Leftrightarrow x^2-4x+4\ge0\)
\(\Leftrightarrow\left(x-2\right)^2\ge0\) (Luôn đúng)
Vậy đẳng thức ban đầu được chứng minh.
\(\dfrac{x^2+4}{4}\ge x\)
\(\Leftrightarrow\dfrac{x^2+4}{4}\ge\dfrac{4x}{4}\)
\(\Leftrightarrow x^2+4+4x\ge0\)
\(\Leftrightarrow\left(x+2\right)^2\ge0\) (luôn đúng)
Chứng minh Bất đẳng thức sau:\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
\(\dfrac{\sqrt{bc}}{a+2\sqrt{bc}}\)+\(\dfrac{\sqrt{ca}}{b+2\sqrt{ca}}\)+\(\dfrac{\sqrt{ab}}{c+2\sqrt{ab}}\) ≤ 1 cho a,b,c là 3 số dương. Chứng minh các BĐT sau
-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.
Chứng minh bất đẳng thức:
\(a^{^{ }2}+b^2+c^2+\dfrac{3}{4}\ge a+b+c\)
Ta có: \(a^2+\dfrac{1}{4}\ge a\)
Tương tự: \(\left\{{}\begin{matrix}b^2+\dfrac{1}{4}\ge b\\c^2+\dfrac{1}{4}\ge c\end{matrix}\right.\)
Cộng 3 cái vế theo vế ta được ĐPCM
Chứng minh các bất đẳng thức sau: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) (với a, b>0)
Biến đổi tương đương:
\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
chứng minh bất đẳng thức
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\)với a ≥ b ≥ c > 0
Ta có: BĐT\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{1}{2}+\dfrac{b}{b+c}-\dfrac{1}{2}+\dfrac{c}{c+a}-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow\dfrac{2a-\left(a+b\right)}{2\left(a+b\right)}+\dfrac{2b-\left(b+c\right)}{2\left(b+c\right)}+\dfrac{2c-\left(c+a\right)}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-a+a-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+\dfrac{a-c}{2}\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{\left(b+c\right)\left(c+a\right)}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) (đúng)
Vậy BĐT luôn đúng với \(a\ge b\ge c>0\)
Sử dụng bất đẳng thức cô-si. Chứng minh bất đẳng thức \(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Coi như a, b, c là số dương
Áp dụng BĐT Cô-si ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)
Dấu "=" xảy ra ...
\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)
Dấu "=" xảy ra ...
\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)
Dấu "=" xảy ra ...
Từ (1), (2), (3) ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra ...
Vậy ...
a, b, c có phải là số dương không bạn, nếu không thì làm sao dùng BĐT Cô-si được
Chứng minh bất đẳng thức : \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\) vs \(a\ge b\ge c>0\)
Ta có: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{a}{2b}+\dfrac{b}{2c}+\dfrac{c}{2a}=\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\ge\dfrac{1}{2}.3=\dfrac{3}{2}\) ( BĐT AM - GM )
Dấu " = " khi a = b = c
\(\Rightarrowđpcm\)
BĐT\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{1}{2}+\dfrac{b}{b+c}-\dfrac{1}{2}+\dfrac{c}{c+a}-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-a+a-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+\dfrac{a-c}{2}\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\cdot\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{2}\cdot\dfrac{a-b}{\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{\left(b+c\right)\left(c+a\right)}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\cdot\dfrac{\left(c-a\right)\left(c+a\right)+\left(a-c\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
chứng minh bất đẳng thức:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\) với\(a\ge b\ge c>0\)
tham khảo tại đây-_-
Câu hỏi của Nguyễn Thị Bình Yên - Toán lớp 8 | Học trực tuyến