\(\dfrac{x+2}{0,5}=\dfrac{2x+1}{2}\)
HELP ME!!!
\(\dfrac{2x^3+5}{x^2-x+1}-\dfrac{x^3+4}{x^2-x+1}\)help me :(
= \(\dfrac{2x^3+5-x^3-4}{x^2-x+1}\) = \(\dfrac{x^3-1}{x^2-x+1}\)
\(\dfrac{2x^3+5 -x^3-4}{x^2-x+1}=\dfrac{x^3+1 }{x+1}\)
câu này luôn \(\dfrac{2x^2y^5}{xy^2z}-\dfrac{4x^2y^3}{xy^2z}\)
\(20\%.x+\dfrac{5}{8}x.0,5=\dfrac{11}{26}\)
help me HELP ME
(\(\dfrac{3}{6-2x}-\dfrac{3-x}{6+2x}-\dfrac{2x^2}{x^2-9}\))(\(\dfrac{1}{x}-\dfrac{1}{3}\))
CMR:biểu thức không phụ thuộc x
Help me
Tính M = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
help me
\(log_2\sqrt{2x^2-2x-3}+log^{x-1}_{\dfrac{1}{2}}=0\)
\(log^{x+4}_2+2log^{x+2}_4=2log^{\dfrac{1}{8}}_{\dfrac{1}{2}}\)
\(log^{4^x+1}_2=log^{2^{2x+3}-6}_2+x\)
Tìm x
a) \(\dfrac{x-1}{5}=\dfrac{1-2x}{3}\) b) \(\dfrac{3-\left|x\right|}{5}=1\dfrac{1}{2}:\dfrac{-6}{5}\)
HELP ME !!!!!!!!!!!!!!!!!!!
a/ \(\dfrac{x-1}{5}=\dfrac{1-2x}{3}\)
\(\Leftrightarrow3\left(x-1\right)=5\left(1-2x\right)\)
\(\Leftrightarrow3x-3=5-10x\)
\(\Leftrightarrow3x+10x=5+3\)
\(\Leftrightarrow13x=8\)
\(\Leftrightarrow x=\dfrac{8}{13}\)
Vậy ...
b/ \(\dfrac{3-\left|x\right|}{5}=1\dfrac{1}{2}:\dfrac{-6}{5}\)
\(\Leftrightarrow\dfrac{3-\left|x\right|}{5}=\dfrac{-5}{4}\)
\(\Leftrightarrow\left(3-\left|x\right|\right)4=5.\left(-5\right)\)
\(\Leftrightarrow\left(3-\left|x\right|\right).4=-25\)
\(\Leftrightarrow3-\left|x\right|=-6,25\)
\(\Leftrightarrow\left|x\right|=-3,25\)
\(\Leftrightarrow x\in\varnothing\)
\(\dfrac{x-1}{5}=\dfrac{1-2x}{3}\Rightarrow3x-3=5-10x\)
Áp dụng tính chất chuyển quế đổi giấu
3x+10x=5+3=8
13x=8
\(\Rightarrow\dfrac{8}{13}\)
b)\(\dfrac{3-|x|}{5}=1\dfrac{1}{2}chia\dfrac{-6}{5}=\dfrac{-5}{4}\)
3-/x/=5chia\(\dfrac{-5}{4}\)=-4
/x/=-4+3=-1
Mà /x/\(\ge0\Rightarrow x\in\varnothing\)
Tick em nha
Bt1: Thực hiện phép tính:
a/\(\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}+\dfrac{y}{y-x}\)
b/\(\left(\dfrac{x+2}{x+1}-\dfrac{2x}{x-1}\right)\)\(.\dfrac{3x+3}{x}+\dfrac{4x^2+x+7}{x^2-x}\)
c/\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}\)
HELP ME!!!!!!!!! THỨ HAI MÌNH PHẢI KIỂM TRA RỒI
a: \(=\dfrac{4xy+x^2-2xy+y^2}{2\left(x+y\right)\left(x-y\right)}\cdot\dfrac{2x}{x+y}-\dfrac{y}{x-y}\)
\(=\dfrac{x}{x-y}-\dfrac{y}{x-y}=1\)
b: \(=\dfrac{x^2+x-2-2x^2-2x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{3\left(x+1\right)}{x}+\dfrac{4x^2+x+7}{x\left(x-1\right)}\)
\(=\dfrac{-x^2-x-2}{\left(x-1\right)}\cdot\dfrac{3}{x}+\dfrac{4x^2+x+7}{x\left(x-1\right)}\)
\(=\dfrac{4x^2+x+7-3x^2-3x-6}{x\left(x-1\right)}=\dfrac{x^2-2x+1}{x\left(x-1\right)}=\dfrac{x-1}{x}\)
c: \(=\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}\)
\(=\dfrac{x+7-x-4}{\left(x+7\right)\left(x+4\right)}=\dfrac{3}{\left(x+4\right)\left(x+7\right)}\)
1, Tìm x ∈ Z biết
a, \(\dfrac{x-4}{15}\)=\(\dfrac{5}{3}\)
b, \(\dfrac{x}{4}\)=\(\dfrac{18}{x+1}\)
c,2x+3 ⋮ x+4
\sqrt{1} \(\dfrac{help}{me}\)
a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)
\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)
\(\Leftrightarrow x-4=25\)
\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)
b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)
\(\Leftrightarrow x\left(x+1\right)=18.4\)
\(\Leftrightarrow x\left(x+1\right)=72\)
vì \(72=8.9=\left(-8\right).\left(-9\right)\)
\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)
c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)
\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)
\(\Leftrightarrow2x+3-2x-8⋮x+4\)
\(\Leftrightarrow-5⋮x+4\)
\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)
Tìm x, y\(\in\)N* biết:
\(\dfrac{1}{2x}+\dfrac{1}{2y}+\dfrac{1}{xy}=\dfrac{1}{2}\)
Help me, pls!
Tks!
ÁP dụng cái bất đẳng thức j j đó
mk có xem làm ở đâu rùi nhưng chưa học nên ko bt giải
1 + \(\dfrac{1}{3}\) +\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\) +......+
\(\dfrac{2}{x(x+1)}\) =1\(\dfrac{1989}{1991}\)
\(\dfrac{help}{me}\)
\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=1\dfrac{1989}{1991}\)
\(\Rightarrow2\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(1-\dfrac{1}{x+1}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{3980}{1991}.\dfrac{1}{2}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{1990}{1991}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{1990}{1991}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{1991}\)
\(\Rightarrow x+1=1991\)
\(\Rightarrow x=1990\)