help me
log \(^{x+4}_2\)+ 2log\(^{x+2}_4\)= 2log\(^{\dfrac{1}{8}}_{\dfrac{1}{2}}\)
giải bpt logarit đặt ẩn phụ
1, \(log_3x.log_2x< log_3x^2+log_2\dfrac{x}{4}\)
2, \(log_2\left(2^x-1\right).log_{\dfrac{1}{2}}\left(2^{x+1}-2\right)>-2\)
3, \(x^{lg^2x-3lgx+1}>1000\)
4, \(6^{log^2_6x}+x^{log_6x}\le12\)
làm hộ giùm mình nhé
help me
1, tìm m đẻ bpt sau t/m x thuộc ( 2;3)
log\(^{x^2+4x+m}_5\) - log\(^{x^2+1}_5\)\(\le1\)
-2. giải bpt
log \(^{\left(x-\dfrac{1}{4}\right)}_x\ge2\)
Giúp e câu này với ạ :((
log22 (2x) + log2x/4 < 9
A. (3/2;6)
B. (0;3)
C. (1;5)
D. (1/2;2)
help me
rút gọn
a) A=\(\left(\log_{^b_a}+log^a_b+2\right)\left(log^b_a-log^b_{b.a}\right)log^a_b=1\)
b) B=\(\sqrt{log^b_a+log^a_b+2}\left(log^b_a-log^b_{ab}\right)\sqrt{log^b_a}\)
bpt logarit đặt ẩn phụ
1, \(log_3x.log_2x< log_3x^2+log_2\dfrac{x}{4}\)
2, \(log_2\left(2^x-1\right).log_{\dfrac{1}{2}}\left(2^{x+1}-2\right)>-2\)
3, \(x^{lg_x^2-3lgx+1}>1000\)
4, \(6^{log_6^2x}+x^{log_6x}\le12\)
bpt logarit đưa về cùng cơ số :
1, \(2lg\left[\left(x-1\right)\sqrt{5}\right]>lg\left(x-5\right)+1\)
2, \(log_{\dfrac{1}{2}}\left[log_2\left(3^x+1\right)\right]>-1\)
3, \(log_x\dfrac{3x-1}{x^2+1}>0\)
4, \(\left(0,08\right)^{log_{x-0,5}x}\ge\left(\dfrac{5\sqrt{2}}{2}\right)^{log_{x-0,5}\left(2x-1\right)}\)
help me
x^2 - 5x+6 < ( 2-x) log\(^x_2\)
giải bpt logarit đưa về cùng cơ số
1, \(2lg\left[\left(x-1\right)\sqrt{5}\right]>lg\left(x-5\right)+1\)
2, \(log_{\dfrac{1}{2}}\left[log_2\left(3^x+1\right)\right]>-1\)
3, \(log_x\dfrac{3x-1}{x^2+1}>0\)
4, \(\left(0,08\right)^{log_{0,5-x}x}\ge\left(\dfrac{5\sqrt[]{2}}{2}\right)^{log_{x-0,5}\left(2x-1\right)}\)
- Ai đó làm giúp với nhé