Những câu hỏi liên quan
LIVERPOOL
Xem chi tiết
Tran Tuan Duc
Xem chi tiết
Mun Amie
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 6 2021 lúc 18:11

\(c\left(1+ab\right)\le c\left(1+\dfrac{a^2+b^2}{2}\right)=c\left(1+\dfrac{1-c^2}{2}\right)=1-\dfrac{1}{2}\left(c-1\right)^2\left(c+2\right)\le1\)

\(\Rightarrow c^2\left(1+ab\right)\le c\Rightarrow\dfrac{c}{1+ab}\ge c^2\)

Hoàn toàn tương tự ta có: \(\dfrac{a}{1+bc}\ge a^2\) ; \(\dfrac{b}{1+ac}\ge b^2\)

Cộng vế: \(VT\ge a^2+b^2+c^2=1\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

Bình luận (1)
Akai Haruma
9 tháng 6 2021 lúc 16:43

Cách 2:

Áp dụng BĐT Bunhiacopxky:

\(\text{VT}[a(1+bc)+b(1+ac)+c(1+ab)]\geq (a+b+c)^2\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{a+b+c+3abc}\)

 Ta sẽ CM: 

\(\frac{(a+b+c)^2}{a+b+c+3abc}\geq 1\)

\(\Leftrightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc\)

Vì $a^2+b^2+c^2=1\Rightarrow a,b,c\leq 1$

$\Rightarrow (a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow 1+ ab+bc+ac\geq a+b+c+abc(1)$

Áp dụng BĐT AM-GM:

$ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}\geq 3\sqrt[3]{a^2b^2c^2.abc}=3abc\geq 2abc(2)$

Từ $(1);(2)\Rightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc$

Ta có đpcm

Dấu "=" xảy ra khi $(a,b,c)=(1,0,0)$ và hoán vị.

Bình luận (2)
KCLH Kedokatoji
Xem chi tiết
Ngô Chi Lan
28 tháng 9 2020 lúc 19:09

Não đặc-.-

Nếu sửa đề ntn thì mk nghĩ không ngược dấu mới làm được nek

Bài 1: CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) với a,b,c dương

Bài làm:

Ta có: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\ge\frac{a^2+b^2+c^2}{\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}}-\frac{8abc}{2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}}\)

\(=\frac{a^2+b^2+c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}-\frac{8abc}{8abc}\)

\(=1-1=0\)

Dấu "=" xảy ra khi: \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
KCLH Kedokatoji
28 tháng 9 2020 lúc 19:10

Vãi bạn, mình đang đưa các bài tập về các bđt ngược chiều nên đề như thế là đúng r

Bình luận (0)
 Khách vãng lai đã xóa
Phan Nghĩa
28 tháng 9 2020 lúc 19:25

bài 1 là AM-GM ở vt xong biến đổi tương đương phải không ạ ?

Bình luận (0)
 Khách vãng lai đã xóa
Trường Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2022 lúc 21:29

3: =>a^2c^2+a^2d^2+b^2c^2+b^2d^2>=a^2c^2+2abcd+b^2d^2

=>a^2d^2-2abcd+b^2c^2>=0

=>(ad-bc)^2>=0(luôn đúng)

Bình luận (0)
An Sơ Hạ
Xem chi tiết
Lê Thành Vinh
20 tháng 4 2017 lúc 22:00

Vẽ hình xong giải cho

Bình luận (0)
Linh Vương Nguyễn Diệu
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 10 2020 lúc 20:07

Áp dụng BĐT đã chứng minh ở phần trước:

\(\left(a+b+c\right)^2\le2k\left(1+bc\right)^2=4\left(1+bc\right)^2\)

\(\Leftrightarrow a^2\left(a+b+c\right)^2\le4a^2\left(1+bc\right)^2\)

\(\Rightarrow a\left(a+b+c\right)\le2a\left(1+bc\right)\)

\(\Rightarrow\frac{a}{1+bc}\le\frac{2a}{a+b+c}\)

Hoàn toàn tương tự, ta có: \(\frac{b}{1+ac}\le\frac{2b}{a+b+c}\) ; \(\frac{c}{1+ca}\le\frac{2c}{a+b+c}\)

Cộng vế với vế: \(P\le2\)

\(P_{max}=2\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
Lê Tài Bảo Châu
Xem chi tiết
vung nguyen thi
Xem chi tiết
Lê Bùi
18 tháng 12 2017 lúc 9:45

c) theo bđt cauchy ta có

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\\a^2+1\ge2a\end{matrix}\right.\)

cộng hết lại rút 2 đi \(\Rightarrowđpcm\)

Bình luận (0)
Lê Bùi
18 tháng 12 2017 lúc 9:47

b)theo bđt bunhiacopxki ta có

\(\left(1^2+a^2\right)\left(1^2+b^2\right)\ge\left(1+ab\right)^2\)

\(\Rightarrowđpcm\)

Bình luận (0)
Lê Bùi
18 tháng 12 2017 lúc 9:59

theo bđt cauchy ta có

\(-\left(a^2d^2+b^2c^2\right)\le-2abcd\)

\(\Leftrightarrow a^2c^2-a^2d^2+b^2d^2-b^2c^2\le a^2c^2-2abcd+b^2d^2\)

\(\Leftrightarrow a^2(c^2-d^2)-b^2(c^2-d^2)\le a^2c^2-2abcd+b^2d^2\)

\(\Leftrightarrow(c^2-d^2)\left(a^2-b^2\right)\le(ac-bd)^2\)

\(\Rightarrowđpcm\)

Bình luận (0)