\(\left\{{}\begin{matrix}(m+1)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)
chứng minh ∀m luôn có nghiệm duy nhất . tìm m sao cho P xy+x+2y
\(\left\{{}\begin{matrix}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)
Chứng minh rằng với mọi m hệ luôn có nghiệm duy nhất (x ; y). Tìm m sao cho P=xy+x+2y đạt giá trị lớn nhất
giải nhanh cho mk nha!!! mai mk cần rồi ạ >.< yêu lắm ạ <3 <3
tìm m ∈ Z để hệ có nghiệm duy nhất là nghiệm duy nhất là nguyên
a)\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}mx+y-3=3\\x+my-2m+1=0\end{matrix}\right.\)
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) sao cho tích xy nhỏ nhất?
`x+my=m+1=>x=m+1-my` thế vào dưới
`=>m(m+1-my)+y-3m+1=0`
`<=>m^2+m-my^2+y-3m-1`
`=>y(1-m^2)=2m-1-m^2`
Hệ có no duy nhất
`=>1-m^2 ne 0=>m ne +-1`
`=>y=(-1+2m-m^2)/(1-m^2)=(m-1)/(m+1)`
`=>x=m+1-my=((m+1)^2-m(m-1))/(m+1)=(3m+1)/(m+1)`
`=>xy=((3m+1)(m-1))/(m+1)^2=(3m^2-2m-1)/(m+1)^2`
Xét `xy+1`
`=(3m^2-2m-1+m^2+2m+1)/(m+1)^2=(4m^2)/(m+1)^2`
`=>xy+1>=0=>xy>=-1`
Dấu "=" xảy ra khi `m=0`
Cho \(\left\{{}\begin{matrix}x +my=2\\mx-2y=1\end{matrix}\right.\)a) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho x lớn hơn 0 và y lớn hơn 0 b) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho (x; y) nguyên
a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow m>\dfrac{1}{2}>0\)
Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0
\(\left\{{}\begin{matrix}2x-y=m+1\\x+y=2m-1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) sao cho `x^2 -2y-1=0`.
\(\left\{{}\begin{matrix}2x-y=m+1\\x+y=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=3m\\2x-y=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m-1\end{matrix}\right.\)
Theo đề: \(x^2-2y-1=0\)
\(\Leftrightarrow m^2-2\left(m-1\right)-1=0\)
\(\Leftrightarrow m^2-2m+1=0\)
\(\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=1\).
Vậy: \(m=1.\)
Tìm m để hệ có nghiệm duy nhất thỏa mãn x, y là số nguyên
\(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{2}\ne\dfrac{-2}{-m}\)
=>\(m^2\ne4\)
=>\(m\notin\left\{2;-2\right\}\)
\(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2y=mx-2m+1\\2x-my=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-m\left(x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\right)=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-x\cdot\dfrac{m^2}{2}+m^2-\dfrac{1}{2}m=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\left(2-\dfrac{m^2}{2}\right)=-m^2+\dfrac{1}{2}m-3m+9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\cdot\dfrac{4-m^2}{2}=-m^2-\dfrac{5}{2}m+9=\dfrac{-2m^2-5m+18}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-2m^2-5m+18}{4-m^2}=\dfrac{2m^2+5m-18}{m^2-4}\\y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{\left(2m+9\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{2m+9}{m+2}\\y=\dfrac{2m+9}{m+2}\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+9m-2m\left(m+2\right)+m+2}{2\left(m+2\right)}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+10m+2-2m^2-4m}{2\left(m+2\right)}=\dfrac{6m+2}{2\left(m+2\right)}=\dfrac{3m+1}{m+2}\end{matrix}\right.\)
Để x,y nguyên thì \(\left\{{}\begin{matrix}2m+9⋮m+2\\3m+1⋮m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m+4+5⋮m+2\\3m+6-5⋮m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5⋮m+2\\-5⋮m+2\end{matrix}\right.\)
=>\(5⋮m+2\)
=>\(m+2\in\left\{1;-1;5;-5\right\}\)
=>\(m\in\left\{-1;-3;3;-7\right\}\)
Cho hpt \(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
a) Tìm m để hpt có nghiệm duy nhất (x,y) và tìm nghiệm (x,y) đó
b) Với (x,y) là nghiệm duy nhất
1. Tìm đẳng thức liên hệ giữa x,y không phụ thuộc vào m
2. Tìm m để \(x^2+y^2\) đạt GTNN
3. Tìm m để \(xy\) đạt GTLN
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
\(\left\{{}\begin{matrix}x+y=1\\mx-y=2m\end{matrix}\right.\)
1. Tìm m để hệ có nghiệm duy nhất
2. Tìm m để hệ thỏa mãn x+2y=2
1: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{1}{-1}=-1\)
=>\(m\ne-1\)
2: \(\left\{{}\begin{matrix}x+y=1\\mx-y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y+mx-y=1+2m\\x+y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m+1\right)=2m+1\\x+y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=1-x=1-\dfrac{2m+1}{m+1}=\dfrac{m+1-2m-1}{m+1}=-\dfrac{m}{m+1}\end{matrix}\right.\)
x+2y=2
=>\(\dfrac{2m+1}{m+1}+\dfrac{-2m}{m+1}=2\)
=>\(\dfrac{1}{m+1}=2\)
=>\(m+1=\dfrac{1}{2}\)
=>\(m=-\dfrac{1}{2}\left(nhận\right)\)